Maximal Entanglement - A New Measure of Entanglement

被引:0
|
作者
Beigi, Salmi [1 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
DENSITY-MATRICES; SEPARABILITY; CONNECTION; CRITERION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maximal correlation is a measure of correlation for bipartite distributions. This measure has two intriguing features: (1) it is monotone under local stochastic maps; (2) it gives the same number when computed on i.i.d. copies of a pair of random variables. This measure of correlation has recently been generalized for bipartite quantum states, for which the same properties have been proved. In this paper, based on maximal correlation, we define a new measure of entanglement which we call maximal entanglement. We show that this measure of entanglement is faithful (is zero on separable states and positive on entangled states), is monotone under local quantum operations, and gives the same number when computed on tensor powers of a bipartite state.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The geometry of concurrence as a measure of entanglement
    Iwai, Toshihiro
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (06) : 1361 - 1376
  • [32] Entanglement measure for composite systems
    Yukalov, VI
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (16) : 1 - 167905
  • [33] Entanglement and its operational measure
    Klyachko, Alexander A.
    Oztop, Baris
    Shumovsky, Alexander S.
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2006, 27 (04) : 389 - 402
  • [34] Potential multiparticle entanglement measure
    Wong, A
    Christensen, N
    [J]. PHYSICAL REVIEW A, 2001, 63 (04): : 1 - 4
  • [35] Barycentric measure of quantum entanglement
    Ganczarek, Wojciech
    Kus, Marek
    Zyczkowski, Karol
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [36] Estimating parameterized entanglement measure
    Wei, Zhi-Wei
    Luo, Ming-Xing
    Fei, Shao-Ming
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (06)
  • [37] Revised geometric measure of entanglement
    Cao, Ya
    Wang, An Min
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (13) : 3507 - 3537
  • [38] Entanglement and its operational measure
    Alexander A. Klyachko
    Bariş Öztop
    Alexander S. Shumovsky
    [J]. Journal of Russian Laser Research, 2006, 27 : 389 - 402
  • [39] An entanglement measure for n qubits
    Li, Dafa
    Li, Xiangrong
    Huang, Hongtao
    Li, Xinxin
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [40] The Bell inequality: a measure of entanglement?
    Munro, WJ
    Nemoto, K
    White, AG
    [J]. JOURNAL OF MODERN OPTICS, 2001, 48 (07) : 1239 - 1246