Communication-Contribution of Catalyst Layer Proton Transport Resistance to Voltage Loss in Polymer Electrolyte Water Electrolyzers

被引:50
|
作者
Babic, Ugljesa [1 ]
Schmidt, Thomas J. [1 ,2 ]
Gubler, Lorenz [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] Swiss Fed Inst Technol, Lab Phys Chem, CH-8093 Zurich, Switzerland
关键词
PERFORMANCE;
D O I
10.1149/2.0031815jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Mass transport losses (eta(mt)(x)) play a significant role at high current densities in polymer electrolyte water electrolyzers (PEWEs). Previous work has shown that eta(mtx) depends on the porous transport layer (PTL) structure, although a clear correlation between the material morphology and eta(mtx) has not been established. In this work, we experimentally determine the overpotential eta(H+)(CLa) associated with the proton transport in the anodic catalyst layer by measuring the ionic resistance in the catalyst layer using electrochemical impedance spectroscopy (EIS) and the transmission-line model. We found that overpotentials, including eta(H+)(CLa), depend on the PTL morphologic surface properties. (C) The Author(s) 2018. Published by ECS.
引用
收藏
页码:J3016 / J3018
页数:3
相关论文
共 50 条
  • [21] Oxygen bubble transport in a porous transport layer of polymer electrolyte water electrolyzer
    Jeon, Dong Hyup
    Kim, Sangwon
    Kim, MinJoong
    Lee, Changsoo
    Cho, Hyun-Seok
    JOURNAL OF POWER SOURCES, 2023, 553
  • [23] In Search of Lost Iridium: Quantification of Anode Catalyst Layer Dissolution in Proton Exchange Membrane Water Electrolyzers
    Milosevic, Maja
    Boehm, Thomas
    Koerner, Andreas
    Bierling, Markus
    Winkelmann, Leonard
    Ehelebe, Konrad
    Hutzler, Andreas
    Suermann, Michel
    Thiele, Simon
    Cherevko, Serhiy
    ACS ENERGY LETTERS, 2023, 8 (06) : 2682 - 2688
  • [24] Catalyst layer structure properties on hydrogen fuel generation performance of proton exchange membrane water electrolyzers
    Wang, Yulin
    Wang, Huixuan
    Dong, Xiaoyan
    Du, Yao
    He, Wei
    Zhao, Yulong
    Li, Hua
    FUEL, 2024, 364
  • [25] Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers
    Lee, J. K.
    Lee, Ch.
    Bazylak, A.
    JOURNAL OF POWER SOURCES, 2019, 437
  • [26] Observation of Preferential Pathways for Oxygen Removal through Porous Transport Layers of Polymer Electrolyte Water Electrolyzers
    Satjaritanun, Pongsarun
    O'Brien, Maeve
    Kulkarni, Devashish
    Shimpalee, Sirivatch
    Capuano, Cristopher
    Ayers, Katherine E.
    Danilovic, Nemanja
    Parkinson, Dilworth Y.
    Zenyuk, Iryna, V
    ISCIENCE, 2020, 23 (12)
  • [27] Mass transport limitations in polymer electrolyte water electrolyzers using spatially-resolved current measurement
    Roenning, Frida H.
    Roy, Anirban
    Aaron, Douglas S.
    Mench, Matthew M.
    JOURNAL OF POWER SOURCES, 2022, 542
  • [28] Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells
    Gwak, Geonhui
    Lee, Jaeseung
    Ghasemi, Masoomeh
    Choi, Jaeyoo
    Lee, Seung Woo
    Jang, Seung Soon
    Ju, Hyunchul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (24) : 13414 - 13427
  • [29] A review of the porous transport layer in polymer electrolyte membrane water electrolysis
    Doan, Tuan Linh
    Lee, Han Eol
    Shah, Syed Shabbar Hassan
    Kim, MinJoong
    Kim, Chang-Hee
    Cho, Hyun-Seok
    Kim, Taekeun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (10) : 14207 - 14220
  • [30] On the role of porous transport layer thickness in polymer electrolyte water electrolysis
    Weber, Carl Cesar
    Schuler, Tobias
    De Bruycker, Ruben
    Gubler, Lorenz
    Buechi, Felix N.
    De Angelis, Salvatore
    JOURNAL OF POWER SOURCES ADVANCES, 2022, 15