Regularity criterion of the 2D Benard equations with critical and supercritical dissipation

被引:25
|
作者
Ye, Zhuan [1 ]
机构
[1] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Benard equations; Boussinesq equations; Global regularity; Regularity criterion; GLOBAL WELL-POSEDNESS; EULER-BOUSSINESQ SYSTEM; MAXIMUM PRINCIPLE; SMOOTH SOLUTIONS; COMMUTATORS; CONVECTION; EXISTENCE;
D O I
10.1016/j.na.2017.02.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem for the two-dimensional (2D) incompressible Bollard equations. On the one hand, we prove global-in-time existence of smooth solutions to the 2D Benard equations with critical dissipation. On the other hand, we establish several regularity criteria involving temperature for 2D Benard equations with supercritical dissipation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 143
页数:33
相关论文
共 50 条
  • [1] REGULARITY RESULTS FOR THE 2D BOUSSINESQ EQUATIONS WITH CRITICAL OR SUPERCRITICAL DISSIPATION
    Wu, Jiahong
    Xu, Xiaojing
    Xue, Liutang
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) : 1963 - 1997
  • [2] Remarks on the improved regularity criterion for the 2D Euler–Boussinesq equations with supercritical dissipation
    Zhuan Ye
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [3] Remarks on the improved regularity criterion for the 2D Euler-Boussinesq equations with supercritical dissipation
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [4] REGULARITY CRITERIA FOR THE 2D BOUSSINESQ EQUATIONS WITH SUPERCRITICAL DISSIPATION
    Li, Jingna
    Shang, Haifeng
    Wu, Jiahong
    Xu, Xiaojing
    Ye, Zhuan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) : 1999 - 2022
  • [5] A magnetic regularity criterion for the 2D MHD equations with velocity dissipation
    Yanghai Yu
    Xing Wu
    Yanbin Tang
    Boundary Value Problems, 2016
  • [6] A magnetic regularity criterion for the 2D MHD equations with velocity dissipation
    Yu, Yanghai
    Wu, Xing
    Tang, Yanbin
    BOUNDARY VALUE PROBLEMS, 2016,
  • [7] A global regularity result for the 2D Boussinesq equations with critical dissipation
    Stefanov, Atanas
    Wu, Jiahong
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 269 - 290
  • [8] A global regularity result for the 2D Boussinesq equations with critical dissipation
    Atanas Stefanov
    Jiahong Wu
    Journal d'Analyse Mathématique, 2019, 137 : 269 - 290
  • [9] GLOBAL REGULARITY OF THE 2D MAGNETIC BENARD SYSTEM WITH PARTIAL DISSIPATION
    Ye, Zhuan
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2018, 23 (3-4) : 193 - 238
  • [10] Regularity Criteria on the 2D Anisotropic Magnetic Benard Equations
    Regmi, Dipendra
    Sharma, Ramjee
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (01): : 60 - 74