On a new class of sufficient dimension reduction estimators

被引:1
|
作者
Dong, Yuexiao [1 ]
Zhang, Yongxu [1 ]
机构
[1] Temple Univ, Dept Stat Sci, Philadelphia, PA 19122 USA
关键词
Linear conditional mean; Ordinary least squares; Sliced inverse regression; SLICED INVERSE REGRESSION;
D O I
10.1016/j.spl.2018.03.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
OLS and SIR are two popular sufficient dimension reduction estimators. OLS can recover at most one direction, and SIR shares this limitation when the response is binary. To address such limitation, we propose slicing-assisted OLS and slicing-assisted SIR. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 50 条
  • [21] On hierarchical clustering in sufficient dimension reduction
    Yoo, Chaeyeon
    Yoo, Younju
    Um, Hye Yeon
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 431 - 443
  • [22] Sufficient dimension reduction for compositional data
    Tomassi, Diego
    Forzani, Liliana
    Duarte, Sabrina
    Pfeiffer, Ruth M.
    BIOSTATISTICS, 2021, 22 (04) : 687 - 705
  • [23] A unified approach to sufficient dimension reduction
    Xue, Yuan
    Wang, Qin
    Yin, Xiangrong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 168 - 179
  • [24] SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA
    Bi, Xuan
    Qu, Annie
    STATISTICA SINICA, 2015, 25 (02) : 787 - 807
  • [25] Diagnostic studies in sufficient dimension reduction
    Chen, Xin
    Cook, R. Dennis
    Zou, Changliang
    BIOMETRIKA, 2015, 102 (03) : 545 - 558
  • [26] Sparse sufficient dimension reduction with heteroscedasticity
    Cheng, Haoyang
    Cui, Wenquan
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)
  • [27] Sufficient dimension reduction and prediction in regression
    Adragni, Kofi P.
    Cook, R. Dennis
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1906): : 4385 - 4405
  • [28] DEEP NONLINEAR SUFFICIENT DIMENSION REDUCTION
    Chen, YinFeng
    Jiao, YuLing
    Qiu, Rui
    Hu, Zhou
    ANNALS OF STATISTICS, 2024, 52 (03): : 1201 - 1226
  • [29] Sufficient dimension reduction and graphics in regression
    Chiaromonte, F
    Cook, RD
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (04) : 768 - 795
  • [30] Sufficient dimension reduction and prediction in regression
    University of Minnesota, School of Statistics, 313 Ford Hall, 224 Church Street Southeast, Minneapolis, MN 55455, United States
    Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 1600, 1906 (4385-4405):