Optimal state filtering and parameter identification for linear systems

被引:2
|
作者
Basin, Michael [1 ]
Perez, Joel [1 ]
Skliar, Mikhail [2 ]
机构
[1] Autonomous Univ Nuevo Leon, Dept Phys & Math Sci, Nuevo Leon, Mexico
[2] Univ Utah, Dept Chem & Fuels Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ACC.2006.1655487
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the optimal filtering and parameter identification problem for linear stochastic systems with unknown multiplicative and additive parameters over linear observations, where unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The resulting filtering system is bilinear in state, with unmeasured linear part, and linear in observations. The obtained solution is based on the recently derived optimal filter for bilinear-linear states with partially measured linear part over linear observations. The optimal filter for the extended state vector also serves as the optimal identifier for the unknown parameters. In the example, performance of the designed optimal state filter and parameter identifier is verified for linear systems with unknown multiplicative parameter over linear observations. Both, stable and unstable, linear systems are examined.
引用
收藏
页码:987 / +
页数:2
相关论文
共 50 条
  • [31] On Parameter Identification of Linear Mechanical Systems
    Guida, Domenico
    Nilvetti, Fabio
    Pappalardo, Carmine M.
    PROCEEDINGS OF THE 3RD INT CONF ON APPLIED MATHEMATICS, CIRCUITS, SYSTEMS, AND SIGNALS/PROCEEDINGS OF THE 3RD INT CONF ON CIRCUITS, SYSTEMS AND SIGNALS, 2009, : 55 - 60
  • [32] Robust H∞ filtering for linear systems with parameter uncertainty
    Cui, P
    Weng, ZX
    Xie, JY
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 717 - 722
  • [33] Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique
    Ding, Feng
    Xu, Ling
    Alsaadi, Fuad E.
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (07): : 892 - 899
  • [34] Identification of non-linear stochastic systems by state dependent parameter estimation
    Young, PC
    McKenna, P
    Bruun, J
    INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (18) : 1837 - 1857
  • [35] A Novel Coupled State/Input/Parameter Identification Method for Linear Structural Systems
    Wan, Zhimin
    Wang, Ting
    Li, Lin
    Xu, Zhichao
    SHOCK AND VIBRATION, 2018, 2018
  • [36] Robust H∞ filtering for a class of non-linear systems with state delay and parameter uncertainty
    Xu, SY
    Van Dooren, P
    INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (10) : 766 - 774
  • [37] Identification of linear parameter varying models using Kalman filtering
    Lovera, M
    Previdi, F
    ADAPTATION AND LEARNING IN CONTROL AND SIGNAL PROCESSING 2001, 2002, : 395 - 399
  • [38] Particle filtering and marginalization for parameter identification in structural systems
    Olivier, Audrey
    Smyth, Andrew W.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2017, 24 (03):
  • [39] Identification of state-space switched linear systems using clustering and hybrid filtering
    Renato V. Lopes
    João Y. Ishihara
    Geovany A. Borges
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39 : 565 - 573
  • [40] Identification of state-space switched linear systems using clustering and hybrid filtering
    Lopes, Renato V.
    Ishihara, Joao Y.
    Borges, Geovany A.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2017, 39 (02) : 565 - 573