A Wide-Bandgap Conjugated Polymer Based on Quinoxalino[6,5-f ]quinoxaline for Fullerene and Non-Fullerene Polymer Solar Cells

被引:14
|
作者
Pang, Shuting [1 ,2 ]
Liu, Ligion [1 ]
Sun, Xiaofei [1 ]
Dong, Sheng [1 ]
Wang, Zhenfeng [1 ]
Zhang, Ruiwen [1 ]
Guo, Yiting [3 ]
Li, Weiwei [3 ]
Zheng, Nan [1 ]
Duan, Chunhui [1 ]
Huang, Fei [1 ,2 ]
Cao, Yong [1 ]
机构
[1] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[2] South China Inst Collaborat Innovat, Dongguan 523808, Peoples R China
[3] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
关键词
conjugated polymers; fullerene; non-fullerene acceptors; polymer solar cells; quinoxalino[6,5-f]quinoxaline; MOLECULAR-WEIGHT; ELECTRON-ACCEPTORS; EFFICIENCY; DONOR; PERFORMANCE; COPOLYMERS; DESIGN; GENERATION; MORPHOLOGY;
D O I
10.1002/marc.201900120
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A wide-bandgap conjugated polymer, PNQx-2F2T, based on a ring-fused unit of quinoxalino[6,5-f ]quinoxaline (NQx), is synthesized for use as electron donor in polymer solar cells (PSCs). The polymer shows intense light absorption in the range from 300 to 740 nm and favorable energy levels of frontier molecular orbitals. The polymer has afforded decent device performance when blended with either fullerene-based acceptor [6,6]-phenyl-C-71-butylric acid methyl ester ([70]PCBM) or non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone-methyl))-5,5,11,11-tetrakis(4-n-hexylphenyl)-dithieno[2,3-d: 2 ',3 '-d ']-s-indaceno[1,2-b:5,6-b ']dithiophene (IT-M). The highest PCEs of 7.9% and 7.5% have been achieved for [70]PCBM or IT-M based PSCs, respectively. Moreover, the influence of molecular weight of PNQx-2F2T on solar cell performance has been investigated. It is found that fullerene-based devices prefer higher polymer molecular weight, while non-fullerene devices are not susceptible to the molecular weight of PNQx-2F2T. The device results are extensively explained by electrical and morphological characterizations. This work not only evidences the potential of NQx for constructing high-performance photovoltaic polymers but also demonstrates a useful structure-performance relationship for efficiency enhancement of non-fullerene PSCs via the development of new conjugated polymers.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Non-fullerene polymer solar cells with VOC > 1 V based on fluorinated quinoxaline unit conjugated polymers
    He, Baitian
    Yin, Qingwu
    Yang, Xiye
    Liu, Liqian
    Jiang, Xiao-Fang
    Zhang, Jie
    Huang, Fei
    Cao, Yong
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (34) : 8774 - 8781
  • [32] Efficient organic solar cells with small energy losses based on a wide-bandgap trialkylsilyl-substituted donor polymer and a non-fullerene acceptor
    Bin, Haijun
    Van der Po, Tom P. A.
    Li, Junyu
    van Gorkom, Bas T.
    Wienk, Martijn M.
    Janssen, Rene A. J.
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [33] Photostability of Fullerene and Non-Fullerene Polymer Solar Cells: The Role of the Acceptor
    Doumon, Nutifafa Y.
    Dryzhov, Mikhail V.
    Houard, Felix V.
    Le Corre, Vincent M.
    Chatri, Azadeh Rahimi
    Christodoulis, Panagiotis
    Koster, L. Jan Anton
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (08) : 8310 - 8318
  • [34] Wide bandgap donor polymers containing carbonyl groups for efficient non-fullerene polymer solar cells
    Li, Hongneng
    Yang, Wenyan
    Wang, Wei
    Wu, Yao
    Wang, Tao
    Min, Jie
    DYES AND PIGMENTS, 2021, 186
  • [35] Efficient non-fullerene polymer solar cells based on a wide bandgap polymer of meta-alkoxy-phenyl-substituted benzodithiophene and difluorobenzotriazole
    Li, Wanbin
    Li, Guangda
    Guo, Xia
    Guo, Bing
    Bi, Zhaozhao
    Guo, Huan
    Ma, Wei
    Ou, Xuemei
    Zhang, Maojie
    Li, Yongfang
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19680 - 19686
  • [36] Effects of incorporated pyrazine on the interchain packing and photovoltaic properties of wide-bandgap D-A polymers for non-fullerene polymer solar cells
    Kini, Gururaj P.
    Choi, Jun Young
    Jeon, Sung Jae
    Suh, Il Soon
    Moon, Doo Kyung
    POLYMER CHEMISTRY, 2019, 10 (32) : 4459 - 4468
  • [37] Enhancing the Performance of Non-Fullerene Organic Solar Cells Using Regioregular Wide-Bandgap Polymers
    Liu, Yahui
    Lu, Hao
    Li, Miao
    Zhang, Zhe
    Feng, Shiyu
    Xu, Xinjun
    Wu, Youzhi
    Bo, Zhishan
    MACROMOLECULES, 2018, 51 (21) : 8646 - 8651
  • [38] Design of wide-bandgap polymers with deeper ionization potential enables efficient ternary non-fullerene polymer solar cells with 13% efficiency
    Liu, Delong
    Zhang, Ying
    Zhan, Lingling
    Lau, Tsz-Ki
    Yin, Hang
    Fong, Patrick W. K.
    So, Shu Kong
    Zhang, Shaoqing
    Lu, Xinhui
    Hou, Jianhui
    Chen, Hongzheng
    Wong, Wai-Yeung
    Li, Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14153 - 14162
  • [39] Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells
    Zhou, Shichao
    Li, Cheng
    Ma, Junshu
    Guo, Yiting
    Zhang, Jianqi
    Wu, Yonggang
    Li, Weiwei
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (04) : 717 - 721
  • [40] Wide Bandgap Polymer Donor with Acrylate Side Chains for Non-Fullerene Acceptor-Based Organic Solar Cells
    Yuan, Yi
    Kumar, Pankaj
    Ngai, Jenner H. L.
    Gao, Xiguang
    Li, Xu
    Liu, Haitao
    Wang, Jinliang
    Li, Yuning
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (20)