On Arithmetic Progressions in A plus B plus C

被引:3
|
作者
Henriot, Kevin [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
关键词
ROTHS THEOREM; SETS;
D O I
10.1093/imrn/rnt121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main result states that when A, B, C are subsets of Z/NZ of respective densities alpha, beta, gamma, the sumset A + B + C contains an arithmetic progression of length at least e(c(log N)c) for densities alpha >= (log N)(-2+epsilon) and beta, gamma >= e(-c(log N)c), where c depends on epsilon. Previous results of this type required one set to have density at least (log N)(-1+o(1)). Our argument relies on the method of Croot, Laba, and Sisask to establish a similar estimate for the sumset A + B and on the recent advances on Roth's theorem by Sanders. We also obtain new estimates for the analogous problem in the primes studied by Cui, Li, and Xue.
引用
收藏
页码:5134 / 5164
页数:31
相关论文
共 50 条
  • [31] Asymptotic behavior of exotic Lagrangian tori Ta,b,c in CP2 as a plus b plus c → ∞
    Lee, Weonmo
    Oh, Yong-Geun
    Vianna, Renato
    JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (03) : 607 - 634
  • [32] UPC plus plus : A PGAS Extension for C plus
    Zheng, Yili
    Kamil, Amir
    Driscoll, Michael B.
    Shan, Hongzhang
    Yelick, Katherine
    2014 IEEE 28TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, 2014,
  • [33] ROC plus plus : Robust Optimization in C plus
    Vayanos, Phebe
    Jin, Qing
    Elissaios, George
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (06) : 2873 - 2888
  • [34] ADDITIVE ARITHMETIC FUNCTIONS ON ARITHMETIC PROGRESSIONS
    ELLIOTT, PDTA
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1987, 54 : 15 - 37
  • [35] The lattice of arithmetic progressions
    Goh, Marcel K.
    Hamdan, Jad
    Saks, Jonah
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 357 - 374
  • [36] ON THE UNION OF ARITHMETIC PROGRESSIONS
    Gilboa, Shoni
    Pinchasi, Rom
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1062 - 1073
  • [37] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [38] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [39] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [40] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204