On Arithmetic Progressions in A plus B plus C

被引:3
|
作者
Henriot, Kevin [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
关键词
ROTHS THEOREM; SETS;
D O I
10.1093/imrn/rnt121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main result states that when A, B, C are subsets of Z/NZ of respective densities alpha, beta, gamma, the sumset A + B + C contains an arithmetic progression of length at least e(c(log N)c) for densities alpha >= (log N)(-2+epsilon) and beta, gamma >= e(-c(log N)c), where c depends on epsilon. Previous results of this type required one set to have density at least (log N)(-1+o(1)). Our argument relies on the method of Croot, Laba, and Sisask to establish a similar estimate for the sumset A + B and on the recent advances on Roth's theorem by Sanders. We also obtain new estimates for the analogous problem in the primes studied by Cui, Li, and Xue.
引用
收藏
页码:5134 / 5164
页数:31
相关论文
共 50 条
  • [1] Long arithmetic progressions in A plus A plus A with A a prime subset
    Cui, Zhen
    Li, Hongze
    Xue, Boqing
    JOURNAL OF NUMBER THEORY, 2012, 132 (07) : 1572 - 1582
  • [2] FloatX: A C plus plus Library for Customized Floating-Point Arithmetic
    Flegar, Goran
    Scheidegger, Florian
    Novakovic, Vedran
    Mariani, Giovani
    Tomas, Andres E.
    Malossi, A. Cristiano, I
    Quintana-Orti, Enrique S.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (04):
  • [3] ARITHMETIC PLUS LOGIC PLUS GEOMETRY = CONCURRENCY
    PRATT, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 583 : 430 - 447
  • [4] Research and Application of Reordering of the Chinese NP "A plus (de) plus B plus (de) plus C"
    Liu, Xiaodie
    Zhu, Yun
    Jin, Yaohong
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 2573 - 2576
  • [6] Operator equations AX plus Y B = C and AX A* plus BY B* = C in Hilbert C*-modules
    Mousavi, Z.
    Eskandari, R.
    Moslehian, M. S.
    Mirzapour, F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 517 : 85 - 98
  • [8] Avoiding arithmetic progressions (mod m) and arithmetic progressions
    Landman, BM
    UTILITAS MATHEMATICA, 1997, 52 : 173 - 182
  • [9] ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS
    Grundman, Helen G.
    Harrington, Joshua
    Wong, Tony W. H.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (03) : 723 - 733
  • [10] Interval arithmetic using expression templates, template meta programming and the upcoming C plus plus standard
    Nehmeier, Marco
    COMPUTING, 2012, 94 (2-4) : 215 - 228