The k-means forest classifier for high dimensional data

被引:0
|
作者
Chen, Zizhong [1 ]
Ding, Xin [1 ]
Xia, Shuyin [1 ]
Chen, Baiyun [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
high dimensional data; attribute noise; k-means forest;
D O I
10.1109/ICBK.2018.00050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The priority search k-means tree algorithm is the most effective k-nearest neighbor algorithm for high dimensional data as far as we know. However, this algorithm is sensitive to attribute noise which is common in high dimensional spaces. Therefore, this paper presents a new method named k-means forest that combines the priority search k-means tree algorithm with random forest. The main idea is to create multiple priority search k-means trees by randomly selecting a fixed number of attributes to make decisions and get the final result by voting. We also design a parallel version for the algorithm. The experimental results on artificial and public benchmark data sets demonstrate the effectiveness of the proposed method.
引用
下载
收藏
页码:322 / 327
页数:6
相关论文
共 50 条
  • [31] Adaptive classifier based on K-means clustering and dynamic programming
    Navarro, A
    Allen, CR
    DOCUMENT RECOGNITION IV, 1997, 3027 : 31 - 38
  • [32] A Novel Decision Cluster Classifier with Nested Agglomerative K-Means
    Zhang, Yanfeng
    Xu, Xiaofei
    Liu, Yingqun
    Li, Xutao
    Ye, Yunming
    JOURNAL OF INTERNET TECHNOLOGY, 2013, 14 (01): : 145 - 151
  • [33] The Sparse MinMax k-Means Algorithm for High-Dimensional Clustering
    Dey, Sayak
    Das, Swagatam
    Mallipeddi, Rammohan
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2103 - 2110
  • [34] K-means for Evolving Data Streams
    Bidaurrazaga, Arkaitz
    Perez, Aritz
    Capo, Marco
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1006 - 1011
  • [35] K-means algorithms for functional data
    Lopez Garcia, Maria Luz
    Garcia-Rodenas, Ricardo
    Gonzalez Gomez, Antonia
    NEUROCOMPUTING, 2015, 151 : 231 - 245
  • [36] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [37] Building a Decision Cluster Classification Model for High Dimensional Data by a Variable Weighting k-Means Method
    Li, Yan
    Hung, Edward
    Chung, Korris
    Huang, Joshua
    AI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5360 : 337 - +
  • [38] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [39] A K-means triangular synthesis large margin classifier with unified pinball loss for imbalanced data
    Shao, Danlin
    Dai, Yixi
    Li, Junjie
    Li, Shenglin
    Chen, Rui
    Applied Soft Computing, 2024, 167
  • [40] Kernel K-means for categorical data
    Couto, J
    ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 46 - 56