A Preconditioned Multisplitting and Schwarz Method for Linear Complementarity Problem

被引:1
|
作者
Liu, Cuiyu [1 ]
Li, Chen-liang [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
关键词
ITERATION METHODS; M-MATRICES; CONVERGENCE; SCHEMES;
D O I
10.1155/2014/519017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The preconditioner presented by Hadjidimos et al. (2003) can improve on the convergence rate of the classical iterative methods to solve linear systems. In this paper, we extend this preconditioner to solve linear complementarity problems whose coefficient matrix is M-matrix or H-matrix and present a multisplitting and Schwarz method. The convergence theorems are given. The numerical experiments show that the methods are efficient.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Parallel Relaxed Multisplitting Method for Affine Second-order Cone Complementarity Problem
    Duan, Ban-xiang
    Fan, Lu-qiao
    Wu, Jiao-yu
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL II, 2009, : 318 - 324
  • [42] Parallel asynchronous Schwarz and multisplitting methods for a nonlinear diffusion problem
    Spiteri, P
    Miellou, JC
    El Baz, D
    [J]. NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 461 - 474
  • [43] Parallel Asynchronous Schwarz and Multisplitting Methods for a Nonlinear Diffusion Problem
    Pierre Spiteri
    Jean-Claude Miellou
    Didier El Baz
    [J]. Numerical Algorithms, 2003, 33 : 461 - 474
  • [44] A class of generalized multisplitting relaxation methods for linear complementarity problems
    Zhongzhi B.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1998, 13 (2) : 188 - 198
  • [46] Interval Relaxation Method for Linear Complementarity Problem
    Jiang, Juan
    [J]. NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 651 - 658
  • [47] A DIRECT METHOD FOR THE LINEAR COMPLEMENTARITY-PROBLEM
    ZHOU, SZ
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1990, 8 (02) : 178 - 182
  • [48] A TWO-STEP MODULUS-BASED MULTISPLITTING ITERATION METHOD FOR THE NONLINEAR COMPLEMENTARITY PROBLEM
    Wang, Guangbin
    Tan, Fuping
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 1954 - 1961
  • [49] A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of H+-matrices
    Yu, Dongmei
    Yuan, Yifei
    Zhang, Yiming
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01): : 123 - 146
  • [50] A multiplicative Schwarz iteration scheme for solving the linear complementarity problem with an H-matrix
    Yang, Haijian
    Li, Qingguo
    Xu, Hongru
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1085 - 1098