A Preconditioned Multisplitting and Schwarz Method for Linear Complementarity Problem

被引:1
|
作者
Liu, Cuiyu [1 ]
Li, Chen-liang [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541004, Guangxi, Peoples R China
关键词
ITERATION METHODS; M-MATRICES; CONVERGENCE; SCHEMES;
D O I
10.1155/2014/519017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The preconditioner presented by Hadjidimos et al. (2003) can improve on the convergence rate of the classical iterative methods to solve linear systems. In this paper, we extend this preconditioner to solve linear complementarity problems whose coefficient matrix is M-matrix or H-matrix and present a multisplitting and Schwarz method. The convergence theorems are given. The numerical experiments show that the methods are efficient.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A multiplicative multisplitting method for solving the linear complementarity problem
    Yang, Haijian
    Li, Qingguo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (10) : 1970 - 1978
  • [2] Multisplitting and Schwarz Methods for Solving Linear Complementarity Problems
    Chenliang Li and Jinping Zeng Department of Computational Science and Mathernaiics
    [J]. Numerical Mathematics(Theory,Methods and Applications), 2006, (04) : 289 - 298
  • [3] The relaxation convergence of multisplitting AOR method for linear complementarity problem
    Cui, Lu-Bin
    Li, Cui-Xia
    Wu, Shi-Liang
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (01): : 40 - 47
  • [4] The Monomial Preconditioned SSOR Method for Linear Complementarity problem
    Mao, Xinna
    Wang, Xiuwang
    Edalatpanah, S. A.
    Fallah, M.
    [J]. IEEE ACCESS, 2019, 7 : 73649 - 73655
  • [5] On the convergence of the multisplitting methods for the linear complementarity problem
    Bai, ZZ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 67 - 78
  • [6] On the preconditioned GAOR method for a linear complementarity problem with an M-matrix
    Shu-Xin Miao
    Dan Zhang
    [J]. Journal of Inequalities and Applications, 2018
  • [7] On the preconditioned GAOR method for a linear complementarity problem with an M-matrix
    Miao, Shu-Xin
    Zhang, Dan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [8] A preconditioned modulus-based matrix multisplitting block iteration method for the linear complementarity problems with Toeplitz matrix
    Min-Hua Wu
    Chen-Liang Li
    [J]. Calcolo, 2019, 56
  • [9] A preconditioned modulus-based matrix multisplitting block iteration method for the linear complementarity problems with Toeplitz matrix
    Wu, Min-Hua
    Li, Chen-Liang
    [J]. CALCOLO, 2019, 56 (02)
  • [10] A MULTISPLITTING METHOD FOR SYMMETRICAL LINEAR COMPLEMENTARITY-PROBLEMS
    MACHIDA, N
    FUKUSHIMA, M
    IBARAKI, T
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 62 (02) : 217 - 227