Comprehensive Genetic Analysis of a Hungarian Amyotrophic Lateral Sclerosis Cohort

被引:27
|
作者
Tripolszki, Kornelia [1 ]
Gampawar, Piyush [2 ]
Schmidt, Helena [2 ]
Nagy, Zsofia F. [1 ]
Nagy, Dora [1 ]
Klivenyi, Peter [3 ]
Engelhardt, Jozsef, I [3 ]
Szell, Marta [1 ]
机构
[1] Univ Szeged, Dept Med Genet, Szeged, Hungary
[2] Med Univ Graz, Res Unit Genet Epidemiol, Gottfried Schatz Res Ctr, Mol Biol & Biochem, Graz, Austria
[3] Univ Szeged, Dept Neurol, Szeged, Hungary
基金
奥地利科学基金会;
关键词
amyotrophic lateral sclerosis; oligogenic inheritance; next-generation sequencing; mutation screening; C9orf72 repeat expansion; genetic heterogeneity; POLYGLUCOSAN BODY DISEASE; SPASTIC PARAPLEGIA; HEXANUCLEOTIDE REPEAT; PHENOTYPIC SPECTRUM; SEQUENCE VARIANTS; SQSTM1; MUTATIONS; RARE VARIANTS; ALS; PROTEIN; KIF5A;
D O I
10.3389/fgene.2019.00732
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Genetic factors play a key role in ALS, and identifying variants that contribute to ALS susceptibility is an important step toward understanding the etiology of the disease. The frequency of protein altering variants in ALS patients has been extensively investigated in populations of different ethnic origin. To further delineate the genetic architecture of the Hungarian ALS patients, we aimed to detect potentially damaging variants in major and minor ALS genes and in genes related to other neurogenetic disorders. A combination of repeat-sizing of C9orf72 and next-generation sequencing (NGS) was used to comprehensively assess genetic variations in 107 Hungarian patients with ALS. Variants in major ALS genes were detected in 36.45% of patients. As a result of repeat sizing, pathogenic repeat expansions in the C9orf72 gene were detected in 10 patients (9.3%). According to the NGS results, the most frequently mutated genes were NEK1 (5.6%), NEFH, SQSTM1 (3.7%), KIF5A, SPG11 (2.8%), ALS2, CCNF, FUS, MATR3, TBK1, and UBQLN2 (1.9%). Furthermore, potentially pathogenic variants were found in GRN and SIGMAR1 genes in single patients. Additional 33 novel or rare known variants were detected in minor ALS genes, as well as 48 variants in genes previously linked to other neurogenetic disorders. The latter finding supports the hypothesis that common pathways in different neurodegenerative diseases may contribute to the development of ALS. While the disease-causing role of several variants identified in this study has previously been established, other variants may show reduced penetrance or may be rare benign variants. Our findings highlight the necessity for large-scale multicenter studies on ALS patients to gain a more accurate view of the genetic pattern of ALS.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] AMYOTROPHIC LATERAL SCLEROSIS - A COMPREHENSIVE REHABILITATION APPROACH
    JANISZEWSKI, DW
    CAROSCIO, JT
    WISHAM, LH
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 1983, 64 (07): : 304 - 307
  • [22] LINKAGE AND GENETIC-ANALYSIS IN AMYOTROPHIC-LATERAL-SCLEROSIS
    SIDDIQUE, T
    PERICAKVANCE, MA
    SIDDIQUE, N
    BROOKS, B
    NORTON, A
    ROSES, A
    ANNALS OF NEUROLOGY, 1986, 20 (01) : 136 - 136
  • [23] GENETIC-LINKAGE ANALYSIS IN FAMILIAL AMYOTROPHIC LATERAL SCLEROSIS
    SIDDIQUE, T
    PERICAKVANCE, MA
    BROOKS, BR
    ROOS, RP
    TANDAN, R
    NICHOLSON, G
    NOORE, F
    ANTEL, JP
    MUNSAT, TL
    PHILLIPS, KL
    HUNG, WY
    WARNER, KL
    BEBOUT, J
    BIAS, W
    ROSES, AD
    CYTOGENETICS AND CELL GENETICS, 1989, 51 (1-4): : 1080 - 1080
  • [24] Angiogenin mutations in Hungarian patients with amyotrophic lateral sclerosis: Clinical, genetic, computational, and functional analyses
    Tripolszki, Kornelia
    Danis, Judit
    Padhi, Aditya K.
    Gomes, James
    Bozo, Renata
    Nagy, Zsofia F.
    Nagy, Dora
    Klivenyi, Peter
    Engelhardt, Jozsef, I
    Szell, Marta
    BRAIN AND BEHAVIOR, 2019, 9 (06):
  • [25] Genetic analysis of ANXA11 variants in a Han Chinese cohort with amyotrophic lateral sclerosis in Taiwan
    Tsai, Pei-Chien
    Liao, Yi-Chu
    Jih, Kang-Yang
    Soong, Bing-Wen
    Lin, Kon-Ping
    Lee, Yi-Chung
    NEUROBIOLOGY OF AGING, 2018, 72 : 188.e1 - 188.e2
  • [26] Invertebrate genetic models of amyotrophic lateral sclerosis
    Zhou, LiJun
    Xu, RenShi
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2024, 17
  • [27] Amyotrophic lateral sclerosis as a complex genetic disease
    Simpson, Claire L.
    Al-Chalabi, Ammar
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2006, 1762 (11-12): : 973 - 985
  • [28] Clinical and genetic heterogeneity of amyotrophic lateral sclerosis
    Sabatelli, M.
    Conte, A.
    Zollino, M.
    CLINICAL GENETICS, 2013, 83 (05) : 408 - 416
  • [29] Amyotrophic lateral sclerosis: recent genetic highlights
    White, Matthew A.
    Sreedharan, Jemeen
    CURRENT OPINION IN NEUROLOGY, 2016, 29 (05) : 557 - 564
  • [30] Genetic variability in sporadic amyotrophic lateral sclerosis
    Van Daele, Sien Hilde
    Moisse, Matthieu
    van Vugt, Joke J. F. A.
    Zwamborn, Ramona A. J.
    van der Spek, Rick
    van Rheenen, Wouter
    Van Eijk, Kristel
    Kenna, Kevin
    Corcia, Philippe
    Vourc'h, Patrick
    Couratier, Philippe
    Hardiman, Orla
    McLaughin, Russell
    Gotkine, Marc
    Drory, Vivian
    Ticozzi, Nicola
    Silani, Vincenzo
    Ratti, Antonia
    de Carvalho, Mamede
    Mora Pardina, Jesus S.
    Povedano, Monica
    Andersen, Peter M.
    Weber, Markus
    Basak, Nazli A.
    Shaw, Chris
    Shaw, Pamela J.
    Morrison, Karen E.
    Landers, John E.
    Glass, Jonathan D.
    van Es, Michael A.
    van den Berg, Leonard H.
    Al-Chalabi, Ammar
    Veldink, Jan
    Van Damme, Philip
    BRAIN, 2023, 146 (09) : 3760 - 3769