Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers

被引:29
|
作者
Li, Liangping [1 ]
Puzel, Ryan [1 ]
Davis, Arden [1 ]
机构
[1] South Dakota Sch Mines & Technol, Dept Geol & Geol Engn, Rapid City, SD 57701 USA
关键词
data assimilation; ensemble Kalman filter; ensemble smoother; groundwater modelling; model calibration; HYDRAULIC-CONDUCTIVITY; TRANSMISSIVITY FIELDS; INVERSE METHODS; AQUIFER; FLOW; CALIBRATION; PARAMETERS; TRANSIENT; TRANSPORT;
D O I
10.1002/hyp.13127
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Groundwater modelling calls for an effective and robust data integrating method to fill the gap between the model and observation data. The ensemble Kalman filter (EnKF), a real-time data assimilation method, has been increasingly applied in multiple disciplines such as petroleum engineering and hydrogeology. In this approach, a groundwater model is updated sequentially with measured data such as hydraulic head and concentration. As an alternative to the EnKF, the ensemble smoother (ES) has been proposed for updating groundwater models using all the data together, with much less computational cost. To further improve the performance of the ES, an iterative ES has been proposed for continuously updating the model by assimilating measurements together. In this work, we compare the performance of the EnKF, the ES, and the iterative ES using a synthetic example in groundwater modelling. Hydraulic head data modelled on the basis of the reference conductivity field are used to inversely estimate conductivities at unsampled locations. Results are evaluated in terms of the characterization of conductivity and groundwater flow predictions. It is concluded that (a) the iterative ES works better than the standard ES because of its continuous updating and (b) the iterative ES could achieve results comparable with those of the EnKF, with less computational cost. These findings show that the iterative ES should be paid much more attention for data assimilation in groundwater modelling.
引用
收藏
页码:2020 / 2029
页数:10
相关论文
共 50 条
  • [21] Optimal ensemble size of ensemble Kalman filter in sequential soil moisture data assimilation
    Yin, Jifu
    Zhan, Xiwu
    Zheng, Youfei
    Hain, Christopher R.
    Liu, Jicheng
    Fang, Li
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (16) : 6710 - 6715
  • [22] An ensemble Kalman-Bucy filter for continuous data assimilation
    Bergemann, Kay
    Reich, Sebastian
    METEOROLOGISCHE ZEITSCHRIFT, 2012, 21 (03) : 213 - 219
  • [23] Operational hydrological data assimilation with the recursive ensemble Kalman filter
    McMillan, H. K.
    Hreinsson, E. Oe.
    Clark, M. P.
    Singh, S. K.
    Zammit, C.
    Uddstrom, M. J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (01) : 21 - 38
  • [24] Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization
    Chen, Yan
    Oliver, Dean S.
    Zhang, Dongxiao
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2009, 66 (1-2) : 1 - 14
  • [25] A multimodel data assimilation framework via the ensemble Kalman filter
    Xue, Liang
    Zhang, Dongxiao
    WATER RESOURCES RESEARCH, 2014, 50 (05) : 4197 - 4219
  • [26] A suboptimal data assimilation algorithm based on the ensemble Kalman filter
    Klimova, Ekaterina
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (669) : 2079 - 2085
  • [27] Comment on 'Data assimilation using an ensemble kalman filter technique'
    van Leeuwen, P.J.
    Monthly Weather Review, 1999, 127 (6 1/2): : 1374 - 1377
  • [29] An adaptive ensemble Kalman filter for soil moisture data assimilation
    Reichle, Rolf H.
    Crow, Wade T.
    Keppenne, Christian L.
    WATER RESOURCES RESEARCH, 2008, 44 (03)
  • [30] Comment on `Data assimilation using a ensemble Kalman filter technique'
    van, Leeuwen, Peter Jan
    Monthly Weather Review, 127 (6 II): : 1374 - 1377