Liquid interfaces with pH-switchable nanoparticle arrays

被引:11
|
作者
Srivastava, Sunita [1 ,2 ]
Fukuto, Masafumi [3 ,4 ]
Gang, Oleg [2 ,5 ,6 ]
机构
[1] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[5] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[6] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
GOLD NANOPARTICLES; TELOMERIC DNA; DUPLEX; SUPERLATTICES; QUADRUPLEX; MOTIF; CRYSTALLIZATION; NANOSTRUCTURES; BRUSHES; HELIX;
D O I
10.1039/c8sm00583d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stimuli-responsive 2D nanoscale systems offer intriguing opportunities for creating switchable interfaces. At liquid interfaces, such systems can provide control over interfacial energies, surface structure, and rheological and transport characteristics, which is relevant, for example, to bio- and chemical reactors, microfluidic devices, and soft robotics. Here, we explore the formation of a pH-responsive membrane formed from gold nanoparticles grafted with DNA (DNA-NPs) at a liquid-vapor interface. A DNA-NP 2D hexagonal lattice can be reversibly switched by pH modulation between an expanded state of non-connected nanoparticles at neutral pH and a contracted state of linked nanoparticles at acidic pH due to the AH(+)-H(+)A base pairing between A-motifs. Our in situ surface X-ray scattering studies reveal that the reversible lattice contraction can be tuned by the length of pH-activated linkers, with up to approximate to 71% change in surface area.
引用
收藏
页码:3929 / 3934
页数:6
相关论文
共 50 条
  • [1] pH-switchable wormlike micelles
    Chu, Zonglin
    Feng, Yujun
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (47) : 9028 - 9030
  • [2] pH-Switchable Ampholytic Supramolecular Copolymers
    Frisch, Hendrik
    Unsleber, Jan Patrick
    Luedeker, David
    Peterlechner, Martin
    Brunklaus, Gunther
    Waller, Mark
    Besenius, Pol
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (38) : 10097 - 10101
  • [3] A smart pH-switchable luminescent hydrogel
    Zhang, Chunqiu
    Li, Yiwei
    Xue, Xiangdong
    Chu, Pengfei
    Liu, Chang
    Yang, Keni
    Jiang, Yonggang
    Chen, Wei-Qiang
    Zou, Guozhang
    Liang, Xing-Jie
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (20) : 4168 - 4171
  • [4] pH-switchable silver nanoprism growth pathways
    Xue, Can
    Mirkin, Chad A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (12) : 2036 - 2038
  • [5] Redox and Doubly pH-Switchable Pickering Emulsion
    Li, Xiaojiang
    Zhu, Peiyao
    Lv, Xin
    Yan, Guijiang
    Lu, Hongsheng
    [J]. LANGMUIR, 2020, 36 (47) : 14288 - 14295
  • [6] pH-switchable permselective gold nanotubular membranes
    Jirage, KB
    Martin, CR
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U306 - U306
  • [7] pH-switchable polymer nanostructures for controlled release
    Doncom, Kay E. B.
    Hansell, Claire F.
    Theato, Patrick
    O'Reilly, Rachel K.
    [J]. POLYMER CHEMISTRY, 2012, 3 (10) : 3007 - 3015
  • [8] pH-Switchable Self-Assembled Materials
    Frisch, Hendrik
    Besenius, Pol
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2015, 36 (04) : 346 - 363
  • [9] pH-switchable strand orientation in peptide assemblies
    Schnarr, NA
    Kennan, AJ
    [J]. ORGANIC LETTERS, 2005, 7 (03) : 395 - 398
  • [10] Protein Nanocage as a pH-Switchable Pickering Emulsifier
    Sarker, Mridul
    Tomczak, Nikodem
    Lim, Sierin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (12) : 11193 - 11201