Measurements of ρR asymmetries at burn time in inertial-confinement-fusion capsules

被引:28
|
作者
Séguin, FH
Li, CK
Frenje, JA
Kurebayashi, S
Petrasso, RD
Marshall, FJ
Meyerhofer, DD
Soures, JM
Sangster, TC
Stoeckl, C
Delettrez, JA
Radha, PB
Smalyuk, VA
Roberts, S
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14621 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
关键词
D O I
10.1063/1.1492806
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent spectroscopic analysis of charged particles generated by fusion reactions in direct-drive implosion experiments at the OMEGA laser facility [T. R. Boehly , Opt. Commun. 133, 495 (1997)] show the presence of low-mode-number asymmetries in compressed-capsule areal density (rhoR) at the time of fusion burn. Experiments involved the acquisition and analysis of spectra of primary (14.7 MeV) protons, from capsules filled with deuterium and helium-3, and secondary (12.6-17.5 MeV) protons, from cryogenic deuterium capsules. The difference between the birth energy and measured energy of these protons provides a measure of the amount of material they passed through on their way out of a capsule, so measurements taken at different angles relative to a target provide information about angular variations in capsule areal density at burn time. Those variations have low-mode-number amplitudes as large as +/-50% about the mean (which is typically similar to65 mg/cm(2)); high-mode-number structure can lead to individual pathlengths through the shell that reach several times the mean. It was found that the observed rhoR asymmetries are often similar for contiguous implosions, but change when the laser beam energy balance is significantly changed, indicating a direct connection between drive symmetry and implosion symmetry. (C) 2002 American Institute of Physics.
引用
收藏
页码:3558 / 3566
页数:9
相关论文
共 50 条
  • [41] A generalized scaling law for the ignition energy of inertial confinement fusion capsules
    Herrmann, MC
    Tabak, M
    Lindl, JD
    NUCLEAR FUSION, 2001, 41 (01) : 99 - 111
  • [42] EFFECT OF TIME-OF-FLIGHT BUNCHING ON EFFICIENCY OF LIGHT-ION-BEAM INERTIAL-CONFINEMENT-FUSION TRANSPORT SCHEMES
    OTTINGER, PF
    ROSE, DV
    OLSON, CL
    JOURNAL OF APPLIED PHYSICS, 1994, 75 (09) : 4402 - 4414
  • [43] Improvement of irradiation uniformity by dynamic interference structures of laser array in inertial-confinement-fusion facilities
    Zhong, Zheqiang
    Sui, Zhan
    Zhang, Bin
    Zhang, Xiaomin
    OPTICS COMMUNICATIONS, 2020, 455
  • [44] D3He-proton emission imaging for inertial-confinement-fusion experiments (invited)
    Séguin, FH
    DeCiantis, JL
    Frenje, JA
    Kurebayashi, S
    Li, CK
    Rygg, JR
    Chen, C
    Berube, V
    Schwartz, BE
    Petrasso, RD
    Smalyuk, VA
    Marshall, FJ
    Knauer, JP
    Delettrez, JA
    McKenty, PW
    Meyerhofer, DD
    Roberts, S
    Sangster, TC
    Mikaelian, K
    Park, HS
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10): : 3520 - 3525
  • [45] First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications
    Hu, S. X.
    Collins, L. A.
    Goncharov, V. N.
    Boehly, T. R.
    Epstein, R.
    McCrory, R. L.
    Skupsky, S.
    PHYSICAL REVIEW E, 2014, 90 (03)
  • [46] Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield
    Seguin, F. H.
    Li, C. K.
    DeCiantis, J. L.
    Frenje, J. A.
    Rygg, J. R.
    Petrasso, R. D.
    Marshall, F. J.
    Smalyuk, V.
    Glebov, V. Yu.
    Knauer, J. P.
    Sangster, T. C.
    Kilkenny, J. D.
    Nikroo, A.
    PHYSICS OF PLASMAS, 2016, 23 (03)
  • [47] Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth
    Bates, J. W.
    Myatt, J. F.
    Shaw, J. G.
    Follett, R. K.
    Weaver, J. L.
    Lehmberg, R. H.
    Obenschain, S. P.
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [48] Proton core imaging of the nuclear burn in inertial confinement fusion implosions
    DeCiantis, JL
    Séguin, FH
    Frenje, JA
    Berube, V
    Canavan, MJ
    Chen, CD
    Kurebayashi, S
    Li, CK
    Rygg, JR
    Schwartz, BE
    Petrasso, RD
    Delettrez, JA
    Regan, SP
    Smalyuk, VA
    Knauer, JP
    Marshall, FJ
    Meyerhofer, DD
    Roberts, S
    Sangster, TC
    Stoeckl, C
    Mikaelian, K
    Park, HS
    Robey, HF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (04):
  • [49] Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
    Tong, J. K.
    McGlinchey, K.
    Appelbe, B. D.
    Walsh, C. A.
    Crilly, A. J.
    Chittenden, J. P.
    NUCLEAR FUSION, 2019, 59 (08)
  • [50] Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions
    Shah, R. C.
    Haines, B. M.
    Wysocki, F. J.
    Benage, J. F.
    Fooks, J. A.
    Glebov, V.
    Hakel, P.
    Hoppe, M.
    Igumenshchev, I. V.
    Kagan, G.
    Mancini, R. C.
    Marshall, F. J.
    Michel, D. T.
    Murphy, T. J.
    Schoff, M. E.
    Silverstein, K.
    Stoeckl, C.
    Yaakobi, B.
    PHYSICAL REVIEW LETTERS, 2017, 118 (13)