Spinal Muscular Atrophy: From Gene Discovery to Clinical Trials

被引:72
|
作者
Nurputra, Dian K. [1 ]
Lai, Poh San [2 ]
Harahap, Nur Imma F. [1 ]
Morikawa, Satoru [1 ,3 ]
Yamamoto, Tomoto [1 ,3 ]
Nishimura, Noriyuki [1 ,3 ]
Kubo, Yuji [4 ]
Takeuchi, Atsuko [5 ]
Saito, Toshio [6 ]
Takeshima, Yasuhiro [1 ]
Tohyama, Yumi [7 ]
Tay, Stacey Kh [2 ]
Low, Poh Sim [2 ]
Saito, Kayoko [8 ]
Nishio, Hisahide [3 ]
机构
[1] Kobe Univ, Grad Sch Med, Dept Community Med & Social Hlth Care, Kobe, Hyogo 6500017, Japan
[2] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Paediat, Singapore 119228, Singapore
[3] Kobe Univ, Grad Sch Med, Dept Pediat, Kobe, Hyogo 6500017, Japan
[4] Tokyo Womens Med Univ, Grad Sch Med, Branch Genet Med Adv Biomed Engn & Sci, Tokyo, Japan
[5] Kobe Pharmaceut Univ, Kobe, Hyogo 658, Japan
[6] Toneyama Natl Hosp, Dept Neurol, Osaka, Japan
[7] Himeji Dokkyo Univ, Fac Pharmaceut Sci, Himeji, Hyogo, Japan
[8] Tokyo Womens Med Univ, Inst Med Genet, Tokyo, Japan
基金
英国医学研究理事会;
关键词
Spinal muscular atrophy (SMA); survival motor neuron (SMN); diagnosis; clinical trials; SURVIVAL-MOTOR-NEURON; THYROTROPIN-RELEASING-HORMONE; INCREASES SMN EXPRESSION; PLACEBO-CONTROLLED TRIAL; SEVERE MOUSE MODEL; EXONIC SPLICING ENHANCER; VALPROIC ACID INCREASES; MESSENGER-RNA; COPY NUMBER; MOLECULAR ANALYSIS;
D O I
10.1111/ahg.12031
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 50 条
  • [41] Clinical Variability in Spinal Muscular Atrophy TypeIII
    Coratti, Giorgia
    Messina, Sonia
    Lucibello, Simona
    Pera, Maria Carmela
    Montes, Jacqueline
    Pasternak, Amy
    Bovis, Francesca
    Exposito Escudero, Jessica
    Mazzone, Elena Stacy
    Mayhew, Anna
    Glanzman, Allan M.
    Young, Sally Dunaway
    Salazar, Rachel
    Duong, Tina
    Muni Lofra, Robert
    De Sanctis, Roberto
    Carnicella, Sara
    Milev, Evelin
    Civitello, Matthew
    Pane, Marika
    Scoto, Mariacristina
    Bettolo, Chiara Marini
    Antonaci, Laura
    Frongia, Annalia
    Sframeli, Maria
    Vita, Gian Luca
    D'Amico, Adele
    Van den Hauwe, Marleen
    Albamonte, Emilio
    Goemans, Nathalie
    Darras, Basil T.
    Bertini, Enrico
    Sansone, Valeria
    Day, John
    Nascimento Osorio, Andres
    Bruno, Claudio
    Muntoni, Francesco
    De Vivo, Darryl C.
    Finkel, Richard S.
    Mercuri, Eugenio
    ANNALS OF NEUROLOGY, 2020, 88 (06) : 1109 - 1117
  • [42] Clinical Characteristics of Cases with Spinal Muscular Atrophy
    Canpolat, Mehmet
    Bayram, Ayse Kacar
    Bahadir, Oguzhan
    Per, Huseyin
    Gumus, Hakan
    Dundar, Munis
    Kumandas, Sefer
    GUNCEL PEDIATRI-JOURNAL OF CURRENT PEDIATRICS, 2016, 14 (01): : 18 - 22
  • [43] Clinical and molecular diagnosis of spinal muscular atrophy
    Panigrahi, I
    Kesari, A
    Phadke, SR
    Mittal, B
    NEUROLOGY INDIA, 2002, 50 (02) : 117 - 122
  • [44] Clinical Outcome Measures in Spinal Muscular Atrophy
    Montes, Jacqueline
    Gordon, Andrew M.
    Pandya, Shree
    De Vivo, Darryl C.
    Kaufmann, Petra
    JOURNAL OF CHILD NEUROLOGY, 2009, 24 (08) : 968 - 978
  • [45] Clinical features of spinal and bulbar muscular atrophy
    Rhodes, Lindsay E.
    Freeman, Brandi K.
    Auh, Sungyoung
    Kokkinis, Angela D.
    La Pean, Alison
    Chen, Cheunju
    Lehky, Tanya J.
    Shrader, Joseph A.
    Levy, Ellen W.
    Harris-Love, Michael
    Di Prospero, Nicholas A.
    Fischbeck, Kenneth H.
    BRAIN, 2009, 132 : 3242 - 3251
  • [46] Diagnosis and Clinical Management of Spinal Muscular Atrophy
    Han, Jay J.
    McDonald, Craig M.
    PHYSICAL MEDICINE AND REHABILITATION CLINICS OF NORTH AMERICA, 2008, 19 (03) : 661 - +
  • [47] Spinal muscular atrophy - Clinical and genetic correlations
    Zerres, K
    Wirth, B
    RudnikSchoneborn, S
    NEUROMUSCULAR DISORDERS, 1997, 7 (03) : 202 - 207
  • [48] Clinical features of spinal muscular atrophy in children
    Stanek, J.
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2020, 83 : S8 - S12
  • [49] From gene to therapy in spinal and bulbar muscular atrophy: Are we there yet?
    Pennuto, Maria
    Rinaldi, Carlo
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2018, 465 (0C) : 113 - 121
  • [50] Large deletions within the spinal muscular atrophy gene region in a patient with spinal muscular atrophy type 3
    Wei, Wei
    Chen, Chunyue
    Liu, Wenting
    Du, Zhenfang
    Chen, Xiaoling
    Zhang, Xianning
    NEURAL REGENERATION RESEARCH, 2011, 6 (23) : 1810 - 1813