Land-cover classification and forest biophysical retrieval from SAR

被引:0
|
作者
Dobson, MC [1 ]
Bergen, K [1 ]
机构
[1] Univ Michigan, Radiat Lab, Ann Arbor, MI 48109 USA
关键词
radar; remote sensing; land-cover classification; tree height; basal area;
D O I
暂无
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Orbital SAR data can be used to generate high accuracy classifications of landcover. The existing single-frequency and singly polarized SAR systems provide marginal accuracy when used alone unless a multitemporal data set is acquired. Multi-frequency archival data yield good results that are robust over a number of ecoregions for a very simple land-cover categorization. SAR data complements electro-optical data. Fusion of these two spectral regimes provides superior classification. The next generation of orbital SAR systems now in construction and design will provide multi-polarized and multi-frequency capabilities that will significantly improve land-cover classification. The retrieval of forest biophysical properties (average tree height, basal area, aboveground biomass and timber volume) can be accomplished using orbital SAR data. The best results use a multi-frequency SAR with polarimetric capability at a long wavelength (such as L-band). LightSAR should yield biophysical estimates that are comparable in accuracy to those obtained by traditional field methods.
引用
收藏
页码:98 / 106
页数:3
相关论文
共 50 条
  • [31] Multi-temporal polarimetry in land-cover classification
    Wozniak, Edyta
    Kofman, Wlodek
    Lewinski, Stanislaw
    Wajer, Pawel
    Rybicki, Marcin
    Aleksandrowicz, Sebastian
    Wlodarkiewicz, Adam
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 8182 - 8199
  • [32] Urban land-cover classification: An object based perspective
    Darwish, A
    Leukert, K
    Reinhardt, W
    [J]. 2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 278 - 282
  • [33] EVALUATION OF AIRBORNE VIDEO DATA FOR LAND-COVER CLASSIFICATION ACCURACY ASSESSMENT IN AN ISOLATED BRAZILIAN FOREST
    MARSH, SE
    WALSH, JL
    SOBREVILA, C
    [J]. REMOTE SENSING OF ENVIRONMENT, 1994, 48 (01) : 61 - 69
  • [34] LAND-COVER CLASSIFICATION THROUGH SEQUENTIAL LEARNING-BASED OPTIMUM-PATH FOREST
    Pereira, D.
    Pisani, R.
    Nakamura, R.
    Papa, J.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 76 - 79
  • [35] A GRAPHICAL APPROACH FOR THE EVALUATION OF LAND-COVER CLASSIFICATION PROCEDURES
    GONG, P
    HOWARTH, PJ
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1990, 11 (05) : 899 - 905
  • [36] ARTIFICIAL NEURAL NETWORKS FOR LAND-COVER CLASSIFICATION AND MAPPING
    CIVCO, DL
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SYSTEMS, 1993, 7 (02): : 173 - 186
  • [37] Impact of topographic normalization on land-cover classification accuracy
    Hale, SR
    Rock, BN
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2003, 69 (07): : 785 - 791
  • [38] A Land-Cover Classification Method Using Point of Interest
    Xing, Hanfa
    Meng, Yuan
    Hou, Dongyang
    Xu, Haibin
    Liu, Jinran
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 758 - 764
  • [39] Incorporating the Downscaled Landsat TM Thermal Band in Land-cover Classification using Random Forest
    Rodriguez-Galiano, V. F.
    Ghimire, B.
    Pardo-Iguzquiza, E.
    Chica-Olmo, M.
    Congalton, R. G.
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2012, 78 (02): : 129 - 137
  • [40] Pruning optimum-path forest ensembles using metaheuristic optimization for land-cover classification
    Nachif Fernandes, Silas Evandro
    de Souza, Andre Nunes
    Gastaldello, Danilo Sinkiti
    Pereira, Danillo Roberto
    Papa, Joao Paulo
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (20) : 5736 - 5762