Uniform Stress Inside an Anisotropic Elliptic Inclusion with Imperfect Interface Bonding

被引:9
|
作者
Ting, T. C. T. [1 ]
机构
[1] Stanford Univ, Div Mech & Computat, Stanford, CA 94305 USA
关键词
Elastic inclusion; Anisotropic elasticity; Inhomogeneity; Imperfect bonding; Uniform stress; BARNETT-LOTHE TENSORS; ANTIPLANE SHEAR; ELASTIC-MATERIALS; SURFACE-WAVES; EXPLICIT EXPRESSIONS; CIRCULAR INCLUSION; PLANE ELASTICITY; STROH FORMALISM; MATRIX-N; COMPOSITES;
D O I
10.1007/s10659-009-9197-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we study the two-dimensional deformation of an anisotropic elliptic inclusion embedded in an infinite dissimilar anisotropic matrix subject to a uniform loading at infinity. The interface is assumed to be imperfectly bonded. The surface traction is continuous across the interface while the displacement is discontinuous. The interface function that relates the surface traction and the displacement discontinuity across the interface is a tensor function, not a scalar function as employed by most work in the literature. We choose the interface function such that the stress inside the elliptic inclusion is uniform. Explicit solution for the inclusion and the matrix is presented. The materials in the inclusion and in the matrix are general anisotropic elastic materials so that the antiplane and inplane displacements are coupled regardless of the applied loading at infinity.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 50 条
  • [31] ON AN ELLIPTIC ELASTIC INCLUSION IN AN ANISOTROPIC MEDIUM
    CHEN, WT
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1967, 20 : 307 - &
  • [32] UNIFORM HEAT-FLOW DISTURBED BY AN ELLIPTIC RIGID INCLUSION EMBEDDED IN AN ANISOTROPIC ELASTIC MATRIX
    LIN, CC
    HWU, C
    JOURNAL OF THERMAL STRESSES, 1993, 16 (02) : 119 - 133
  • [33] Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress
    Lim, C. W.
    Li, Z. R.
    He, L. H.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (17) : 5055 - 5065
  • [34] ARBITRARILY ORIENTED CRACK INSIDE AN ELLIPTIC INCLUSION
    ANLAS, G
    SANTARE, MH
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (03): : 589 - 594
  • [35] On the uniform stress state inside an inclusion of arbitrary shape in a three-phase composite
    Wang, X.
    Gao, X. -L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (06): : 1101 - 1116
  • [36] Strength theory of imperfect-bonding interface
    Zhao, XP
    Zhou, BL
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1998, 17 (11) : 953 - 956
  • [37] On the uniform stress state inside an inclusion of arbitrary shape in a three-phase composite
    X. Wang
    X. -L. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 1101 - 1116
  • [38] A sensitive interval of imperfect interface parameters based on the analysis of general solution for anisotropic matrix containing an elliptic inhomogeneity
    Huang, Z. Q.
    He, X. Q.
    Liew, K. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 73-74 : 67 - 77
  • [39] INCLUSION PROBLEM WITH DISLOCATION-LIKE IMPERFECT INTERFACE
    Zhao, Y. T.
    Zhao, B. S.
    Wang, M. Z.
    Ma, S. P.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2011, 2011, : 877 - +
  • [40] A Circular Inclusion with Inhomogeneously Imperfect Interface in Plane Elasticity
    L.J. Sudak
    C.Q. Ru
    P. Schiavone
    A. Mioduchowski
    Journal of Elasticity, 1999, 55 : 19 - 41