Hot-electron transfer in quantum-dot heterojunction films

被引:52
|
作者
Grimaldi, Gianluca [1 ]
Crisp, Ryan W. [1 ]
ten Brinck, Stephanie [2 ]
Zapata, Felipe [2 ,3 ]
van Ouwendorp, Michiko [1 ]
Renaud, Nicolas [1 ]
Kirkwood, Nicholas [1 ]
Evers, Wiel H. [1 ,4 ]
Kinge, Sachin [5 ]
Infante, Ivan [2 ]
Siebbeles, Laurens D. A. [1 ]
Houtepen, Arjan J. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, Optoelect Mat Sect, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Vrije Univ Amsterdam, Dept Theoret Chem, NL-1081 HV Amsterdam, Netherlands
[3] Netherlands eSci Ctr, Sci Pk 140, NL-1098 XG Amsterdam, Netherlands
[4] Delft Univ Technol, Kavli Inst Nanosci, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[5] Toyota Motor Europe, Mat Res & Dev, Hoge Wei 33, B-1930 Zaventem, Belgium
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
欧洲研究理事会;
关键词
SEMICONDUCTOR NANOCRYSTALS; INTRABAND RELAXATION; MOLECULAR-DYNAMICS; PBSE NANOCRYSTALS; CDSE NANOCRYSTALS; PYXAID PROGRAM; SOLIDS; TRANSITIONS; EXTRACTION; STATES;
D O I
10.1038/s41467-018-04623-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hot-electron transfer in quantum-dot heterojunction films
    Gianluca Grimaldi
    Ryan W. Crisp
    Stephanie ten Brinck
    Felipe Zapata
    Michiko van Ouwendorp
    Nicolas Renaud
    Nicholas Kirkwood
    Wiel H. Evers
    Sachin Kinge
    Ivan Infante
    Laurens D. A. Siebbeles
    Arjan J. Houtepen
    [J]. Nature Communications, 9
  • [2] Hot-electron transport in quantum-dot photodetectors
    EE Department, 321 Bonner Hall, State University of New York, Buffalo, NY 14260, United States
    不详
    不详
    [J]. Int. J. High Speed Electron. Syst., 2008, 4 (1013-1022):
  • [3] HOT-ELECTRON BISTABILITY IN QUANTUM-DOT STRUCTURES
    GOODNICK, SM
    WU, JC
    WYBOURNE, MN
    SMITH, DD
    [J]. PHYSICAL REVIEW B, 1993, 48 (12) : 9150 - 9153
  • [4] ELECTRON IN A MAGNETIC QUANTUM-DOT
    SOLIMANY, L
    KRAMER, B
    [J]. SOLID STATE COMMUNICATIONS, 1995, 96 (07) : 471 - 475
  • [5] Electron-nuclear spin transfer in quantum-dot networks
    Prada, M
    Toonen, RC
    Blick, RH
    Harrison, P
    [J]. NANOTECHNOLOGY, 2005, 16 (05) : S266 - S272
  • [6] Controlling the Electron-Transfer Kinetics of Quantum-Dot Assemblies
    Liu, Ruibin
    Bloom, Brian P.
    Waldeck, David H.
    Zhang, Peng
    Beratan, David N.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (27): : 14401 - 14412
  • [7] Influence of local structures on the energy transfer efficiencies of quantum-dot films
    Peng, Lintao
    Ma, Xuedan
    Zhu, Hua
    Chen, Ou
    Wang, Wei
    [J]. PHYSICAL REVIEW B, 2020, 102 (03)
  • [8] QUANTUM EFFECTS IN THE HOT-ELECTRON MICROBOLOMETER
    TANG, A
    RICHARDS, PL
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995, 5 (02) : 2599 - 2603
  • [9] HOT-ELECTRON MAGNETOTRANSPORT IN QUANTUM WIRES
    TELANG, N
    BANDYOPADHYAY, S
    [J]. PHYSICAL REVIEW B, 1995, 51 (15) : 9728 - 9734
  • [10] HOT-ELECTRON TRANSPORT IN QUANTUM WELLS
    INOUE, M
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1985, 1 (05) : 433 - 440