Imprecise probability models for inference in exponential families

被引:0
|
作者
Quaeghebeur, Erik [1 ]
de Cooman, Gert [1 ]
机构
[1] Univ Ghent, EESA Dept, SYSTeMS Res Grp, B-9052 Zwijnaarde, Belgium
关键词
Exponential family; Imprecise probability models; Inference; Conjugate analysis; Naive credal classifier;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
When considering sampling models described by a distribution from an exponential family, it is possible to create two types of imprecise probability models. One is based on the corresponding conjugate distribution and the other on the corresponding predictive distribution. In this paper, we show how these types of models can be constructed for any (regular, linear, canonical) exponential family, such as the centered normal distribution. To illustrate the possible use of such models, we take a look at credal classification. We show that they are very natural and potentially promising candidates for describing the attributes of a credal classifier, also in the case of continuous attributes.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条
  • [41] Hybrid schemes for exact conditional inference in discrete exponential families
    David Kahle
    Ruriko Yoshida
    Luis Garcia-Puente
    Annals of the Institute of Statistical Mathematics, 2018, 70 : 983 - 1011
  • [42] Imprecise Probability and Chance
    Peressini, Anthony F.
    ERKENNTNIS, 2016, 81 (03) : 561 - 586
  • [43] Hybrid schemes for exact conditional inference in discrete exponential families
    Kahle, David
    Yoshida, Ruriko
    Garcia-Puente, Luis
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (05) : 983 - 1011
  • [44] EMPIRICAL NULL AND FALSE DISCOVERY RATE INFERENCE FOR EXPONENTIAL FAMILIES
    Schwartzman, Armin
    ANNALS OF APPLIED STATISTICS, 2008, 2 (04): : 1332 - 1359
  • [45] Posterior inference in curved exponential families under increasing dimensions
    Belloni, Alexandre
    Chernozhukov, Victor
    ECONOMETRICS JOURNAL, 2014, 17 (02): : S75 - S100
  • [46] Inference for eigenvalues and eigenvectors in exponential families of random symmetric matrices
    Lee, Han Na
    Schwartzman, Armin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 152 - 171
  • [47] Accurate Directional Inference for Vector Parameters in Linear Exponential Families
    Davison, A. C.
    Fraser, D. A. S.
    Reid, N.
    Sartori, N.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 302 - 314
  • [48] NATURAL EXPONENTIAL-FAMILIES OF PROBABILITY-DISTRIBUTIONS AND EXPONENTIAL-POLYNOMIAL APPROXIMATION
    MARTIN, C
    SHUBOV, V
    APPLIED MATHEMATICS AND COMPUTATION, 1993, 59 (2-3) : 275 - 297
  • [49] Statistical Enrichment Models for Activity Inference from Imprecise Location Data
    He, Ran
    Cao, Jin
    Zhang, Lisa
    Lee, Denny
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2019), 2019, : 946 - 954
  • [50] Imprecise Probability and Chance
    Anthony F. Peressini
    Erkenntnis, 2016, 81 : 561 - 586