QUARTIC JULIA SETS INCLUDING ANY TWO COPIES OF QUADRATIC JULIA SETS

被引:4
|
作者
Katagata, Koh [1 ]
机构
[1] Ichinoseki Coll Takanashi, Natl Inst Technol, Ichinoseki, Iwate 0218511, Japan
关键词
Julia sets; polynomial-like maps; quasiconformal / quasiregular maps;
D O I
10.3934/dcds.2016.36.2103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If the Julia set of a quartic polynomial with certain conditions is neither connected nor totally disconnected, there exists a homeomorphism between the set of all components of the filled-in Julia set and some subset of the corresponding symbol space. The question is to determine the quartic polynomials exhibiting such a dynamics and describe the topology of the connected components of their filled-in Julia sets. In this paper, we answer the question, namely we show that for any two quadratic Julia sets, there exists a quartic polynomial whose Julia set includes copies of the two quadratic Julia sets.
引用
收藏
页码:2103 / 2112
页数:10
相关论文
共 50 条
  • [41] Disconnected Julia sets as buried Julia components
    Yingqing Xiao
    Fei Yang
    Mathematische Zeitschrift, 2024, 308 (4)
  • [42] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    Geometriae Dedicata, 2015, 174 : 169 - 176
  • [43] Fractals: Sets of Julia and Sets of Mandelbrot
    Miranda, Aldicio J.
    SIGMAE, 2012, 1 (01): : 110 - 118
  • [44] Continuity of Julia sets
    Wu, SJ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (03): : 281 - 285
  • [45] Normality and Julia sets
    Wang, YF
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS, 2000, 214 : 583 - 589
  • [46] A PROBLEM ON JULIA SETS
    BAKER, IN
    EREMENKO, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1987, 12 (02): : 229 - 236
  • [47] Continuity of Julia sets
    伍胜健
    ScienceinChina,SerA., 1999, Ser.A.1999 (03) : 281 - 285
  • [48] Consensus of Julia Sets
    Sun, Weihua
    Liu, Shutang
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [49] Smooth Julia Sets
    Sekovanov V.S.
    Journal of Mathematical Sciences, 2020, 245 (2) : 202 - 216
  • [50] SYMMETRIES OF JULIA SETS
    BEARDON, AF
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 576 - 582