Identification of Acral Melanoma using Genetic Algorithms Compared with Convolutional Neural Network using Dermoscopic Images

被引:0
|
作者
Lakshmi, V. Nithya [1 ]
Nirmala, P. [1 ]
机构
[1] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biomed Engn, Chennai 602105, Tamil Nadu, India
来源
CARDIOMETRY | 2022年 / 25期
关键词
Acral Melanoma; Convolutional Neural Network CNN; Genetic Algorithm; Innovative Technique; Machine Learning; Skin Cancer; PERFORMANCE;
D O I
10.18137/cardiometry.2022.25.16401645
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Aim: Identification of acral melanoma using genetic algorithm compared with convolutional neural network CNN using dermoscopic images. Materials and Methods: The study was conducted using the genetic algorithm and convolutional neural network algorithm to analyze and compare the acral melanoma detection. The number of samples used is 20, total sample size is 40. Acral melanoma is identified by evaluating the effectiveness with pre-test power of 80% (G-power), alpha=0.05, confidence interval 95%. Result: The proposed genetic algorithm helps in increasing the higher accuracy compared to convolutional neural networks with improved accuracy of the genetic algorithm algorithm is 96 % and the convolutional neural network algorithm is 95%. The accurate rate is 80 with the data features found in the genetic algorithm algorithm. Precision is different in each algorithm. Conclusion: This study shows a higher accuracy for the genetic algorithm when compared with convolutional neural networks.
引用
收藏
页码:1640 / 1645
页数:6
相关论文
共 50 条
  • [21] Deep Convolutional Neural Network for Melanoma Detection using Dermoscopy Images
    Kaur, R.
    GholamHosseini, H.
    Sinha, R.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1524 - 1527
  • [22] Diagnosis of melanoma from dermoscopic images using a deep depthwise separable residual convolutional network
    Sarkar, Rahul
    Chatterjee, Chandra Churh
    Hazra, Animesh
    IET IMAGE PROCESSING, 2019, 13 (12) : 2130 - 2142
  • [23] Classifying Melanoma in ISIC Dermoscopic Images Using Efficient Convolutional Neural Networks and Deep Transfer Learning
    Mahmoud, Habeba
    Omer, Osama A.
    Ragab, Shimaa
    Esmaiel, Hamada
    Abdel-Nasser, Mohamed
    TRAITEMENT DU SIGNAL, 2024, 41 (02) : 679 - 691
  • [24] A Convolutional Neural Network for skin lesion classification in Dermoscopic Images using discrete wavelet transform
    Mihaela, Miron
    Culea-Florescu, Anisia Luiza
    Moldovanu, Simona
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [25] Arabic Text Classification Using Convolutional Neural Network and Genetic Algorithms
    Alsaleh, Deem
    Larabi-Marie-Sainte, Souad
    IEEE ACCESS, 2021, 9 (09): : 91670 - 91685
  • [26] Deep Neural Network for Melanoma Classification in Dermoscopic Images
    Wang Jiahao
    Jin Xingguang
    Yuan, Wenjie
    Luo, Zhenyi
    Yu, Zhengyang
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 666 - 669
  • [27] Identification of Glioma from MR Images Using Convolutional Neural Network
    Saxena, Nidhi
    Sharma, Rochan
    Joshi, Karishma
    Rana, Hukum Singh
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2018, VOL 1, 2019, 880 : 589 - 597
  • [28] Tumor Identification in Colorectal Histology Images Using a Convolutional Neural Network
    Yoon, Hongjun
    Lee, Joohyung
    Oh, Ji Eun
    Kim, Hong Rae
    Lee, Seonhye
    Chang, Hee Jin
    Sohn, Dae Kyung
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (01) : 131 - 140
  • [29] Tumor Identification in Colorectal Histology Images Using a Convolutional Neural Network
    Hongjun Yoon
    Joohyung Lee
    Ji Eun Oh
    Hong Rae Kim
    Seonhye Lee
    Hee Jin Chang
    Dae Kyung Sohn
    Journal of Digital Imaging, 2019, 32 : 131 - 140
  • [30] Optimized attention-induced multihead convolutional neural network with efficientnetv2-fostered melanoma classification using dermoscopic images
    Maheswari, M.
    Ayoobkhan, Mohamed Uvaze Ahamed
    Shirley, C. P.
    Lakshmi, T. R. Vijaya
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, : 3311 - 3325