Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods

被引:107
|
作者
Almeida, Trevor P. [1 ]
Fay, Mike
Zhu, Yanqiu [1 ]
Brown, Paul D. [1 ]
机构
[1] Univ Nottingham, Fac Engn, Div Mat Mech & Struct, Nottingham NG7 2RD, England
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 43期
基金
英国工程与自然科学研究理事会;
关键词
FERRIC HYDROXIDE GEL; MAGNETIC-PROPERTIES; FORMATION MECHANISM; HEMATITE NANOPARTICLES; BETA-FEOOH; PARTICLES; SHAPE; NANOCRYSTALS; SIZE; AKAGANEITE;
D O I
10.1021/jp907081j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A "process map" for the hydrothermal synthesis (HS) of single crystalline alpha-Fe2O3 nanorods from aqueous FeCl3 is presented, as a function of temperature, time, and phosphate concentration, as assessed using the combined techniques of X-ray diffractometry, transmission electron microscopy, selected area electron diffraction, Fourier transform infrared spectrometry, and X-ray photoelectron spectroscopy. The process map provides insight into the nature of intermediate beta-FeOOH nanorod precipitation, dissolution and subsequent alpha-Fe2O3 growth, along with the effect of PO43- anion concentration on the alpha-Fe2O3 particle shape. Increasing the processing temperature in the absence of 4 surfactant promoted the dissolution of initially formed beta-FeOOH nanorods and the nucleation and growth of equiaxed alpha-Fe2O3 nanoparticles with rhombohedral morphology. Increasing additions of phosphate surfactant resulted in a shape change of the alpha-Fe2O3 nanoparticles into lenticular alpha-Fe2O3 nanorods with increasing aspect ratio but with progressive inhibition of alpha-Fe2O3 phase formation. Increasing the synthesis temperature in the presence of PO43- anions was associated with the recovery of well-defined single crystal, lenticular nanorods. Increasing the time of synthesis in the presence of PO43- anions was similarly associated with the progressive formation and dissolution of beta-FeOOH and the growth of well-defined lenticular alpha-Fe2O3 nanorods. An HS processing temperature of 200 degrees C and an Fe3+-PO43- molar ratio of 31.5 yielded optimized crystalline lenticular alpha-Fe2O3 nanorods with an aspect ratio of similar to 7. Chemical analysis indicated that some P was retained within the bulk of the developed alpha-Fe2O3 nanorods.
引用
收藏
页码:18689 / 18698
页数:10
相关论文
共 50 条
  • [21] Hydrothermal synthesis and characterization of monodisperse α-Fe2O3 nanoparticles
    Jiao Hua
    Jiao Gengsheng
    MATERIALS LETTERS, 2009, 63 (30) : 2725 - 2727
  • [22] Hydrothermal Synthesis and Magnetic Properties of α-Fe2O3 Polyhedrons
    Tian, Li
    Huang, Kelong
    FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 3014 - 3017
  • [23] Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets
    Peng, Dengfeng
    Beysen, Sadeh
    Li, Qiang
    Sun, Yanfei
    Yang, Linyu
    PARTICUOLOGY, 2010, 8 (04) : 386 - 389
  • [24] Hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles
    Chen, DR
    Xu, RR
    JOURNAL OF SOLID STATE CHEMISTRY, 1998, 137 (02) : 185 - 190
  • [25] Hydrothermal Synthesis and Charaction of α-Fe2O3 Mesocrystals and Nanorings
    Deng, Bin
    Li, Qiangguo
    Wang, Cunchang
    ADVANCED MATERIALS, PTS 1-4, 2011, 239-242 : 886 - 890
  • [26] Hydrothermal Synthesis and Characterization of Cobalt Doped α-Fe2O3
    Suresh, R.
    Vijayalakshmi, L.
    Stephen, A.
    Narayanan, V.
    INTERNATIONAL CONFERENCE ON ADVANCED NANOMATERIALS AND NANOTECHNOLOGY (ICANN 2009), 2010, 1276 : 362 - +
  • [27] Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors
    Yang, Wanlu
    Gao, Zan
    Wang, Jun
    Wang, Bin
    Liu, Lianhe
    SOLID STATE SCIENCES, 2013, 20 : 46 - 53
  • [28] Hydrothermal synthesis of the CdS nanorods on electrochemically deposited Fe2O3 thin film for improving photoelectrochemical performance
    Sang, Pankyu
    Kim, Jung Hyeun
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [29] Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH
    Wang, X
    Chen, XY
    Gao, LS
    Zheng, HG
    Ji, MR
    Tang, CM
    Shen, T
    Zhang, ZD
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (05) : 905 - 907
  • [30] Facile synthesis and magnetic properties of cross α-Fe2O3 nanorods
    Jia, Xiaohua
    Yang, Lin
    Song, Haojie
    Su, Yingtao
    MICRO & NANO LETTERS, 2011, 6 (09): : 806 - 808