Residual stress analysis of thin AlSi10Mg parts produced by Laser Powder Bed Fusion

被引:45
|
作者
Salmi, Alessandro [1 ]
Atzeni, Eleonora [1 ]
机构
[1] Politecn Torino, Dept Management & Prod Engn DIGEP, Cso Duca degli Abruzzi 24, I-10129 Turin, Italy
关键词
Residual stresses; AlSi10Mg; Laser Powder Bed Fusion; hole drilling method; geometry; DISTORTION;
D O I
10.1080/17452759.2019.1650237
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among the various Additive Manufacturing (AM) technologies available for metal part production, powder bed processes are the most promising for industrial mass production. However, one obstacle to the widespread adoption of AM technologies is the effect of the residual stress state on the integrity and lifetime of parts. The residual stress state is influenced to a great extent by the geometry and orientation of the part, and such conditions as the distance of the part regions from the building platform or geometrical constraints may change the stress values and distribution. This work describes an experimental activity that has made it possible to draw the trend of the residual stress beneath the surfaces of thin samples produced in AISi10Mg alloy through a Laser Powder Bed Fusion (L-PBF) process, in order to evaluate how stresses are altered by different geometrical constraints.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 50 条
  • [31] Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure
    Cabrini, M.
    Lorenzi, S.
    Pastore, T.
    Testa, C.
    Manfredi, D.
    Lorusso, M.
    Calignano, F.
    Pavese, M.
    Andreatta, F.
    CORROSION SCIENCE, 2019, 152 : 101 - 108
  • [32] AlSi10Mg in Powder Bed Fusion with Laser Beam: An Old and Boring Material?
    Rasch, Michael
    Bartels, Dominic
    Sun, Shoujin
    Schmidt, Michael
    MATERIALS, 2022, 15 (16)
  • [33] Manufacturability of AlSi10Mg overhang structures fabricated by laser powder bed fusion
    Han, Quanquan
    Gu, Heng
    Soe, Shwe
    Setchi, Rossi
    Lacan, Franck
    Hill, Jacob
    MATERIALS & DESIGN, 2018, 160 : 1080 - 1095
  • [34] Effect of deep cryogenic treatment on mechanical properties and residual stress of AlSi10Mg alloy fabricated by laser powder bed fusion
    Zhou, Chang'an
    Sun, Qidong
    Qian, Dongqing
    Liu, Jiangwei
    Sun, Jie
    Sun, Zhilin
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 303
  • [35] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [36] Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy
    Balbaa, M. A.
    Ghasemi, A.
    Fereiduni, E.
    Elbestawi, M. A.
    Jadhav, S. D.
    Kruth, J-P
    ADDITIVE MANUFACTURING, 2021, 37
  • [37] Strength-hardness relationship for AlSi10Mg alloy produced by laser powder bed fusion: An experimental study
    Serjouei, A.
    Libura, T.
    Brodecki, A.
    Radziejewska, J.
    Broniszewska, P.
    Pawlowski, P.
    Szymczak, T.
    Bodaghi, M.
    Kowalewski, Z.L.
    Materials Science and Engineering: A, 2022, 861
  • [38] Effect of Post Heat Treatment on Fatigue Strength of AlSi10Mg Produced by Laser Powder Bed Fusion Process
    Lai, Wei-Jen
    Ojha, Avinesh
    Li, Ziang
    TMS 2022 151ST ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2022, : 141 - 163
  • [39] Strength-hardness relationship for AlSi10Mg alloy produced by laser powder bed fusion: An experimental study
    Serjouei, A.
    Libura, T.
    Brodecki, A.
    Radziejewska, J.
    Broniszewska, P.
    Pawlowski, P.
    Szymczak, T.
    Bodaghi, M.
    Kowalewski, Z. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
  • [40] Wear Behavior of AlSi10Mg Alloy Produced by Laser-Based Powder Bed Fusion and Gravity Casting
    Tonolini, Pietro
    Montesano, Lorenzo
    Tocci, Marialaura
    Pola, Annalisa
    Gelfi, Marcello
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (10)