A Flexible Pellet Injection System for the Tokamak JT-60SA: The Final Conceptual Design

被引:8
|
作者
Lang, P. T. [1 ]
Nakano, T. [2 ]
Garzotti, L. [3 ]
Pegourie, B. [4 ]
Ploeckl, B. [1 ]
Sakurai, S. [2 ]
机构
[1] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[2] Natl Inst Quantum & Radiol Technol, Naka Fus Inst, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan
[3] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
JT-60SA; tokamak; pellet technology; particle fueling; EDGE LOCALIZED MODES; ABLATION;
D O I
10.1080/15361055.2018.1471960
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The research plan of the JT-60SA, a superconducting tokamak device currently under construction, requests a powerful pellet injection system for its particle fueling and edge-localized-mode (ELM) pacing experiments. These investigations, foreseen to answer basic questions with respect to the operation of ITER and a future fusion power plant like DEMO, need pellets with flexible parameters delivered precisely and reliably for control purposes. Here, we present a conceptual design of this system based on classical pellet technology. Analysis showed pellets will show the best performance for fueling and most likely also for ELM pacing when injected from the torus inboard side, despite the limited maximum pellet speed caused by this approach. This is due to constructional constraints rising from the fact the JT-60SA vacuum vessel is already under construction, enforcing inboard injection via a multibend guiding-tube system and limiting the maximum pellet speed to about 470m/s. To match this boundary condition and fulfill the need for precise control, a centrifuge accelerator has been chosen. Based on the stop cylinder principle and equipped with a double accelerator arm, it can host up to six steady-state ice extruders working simultaneously for pellet production. This way, all system requirements expressed in the research plan can be well covered, providing even some headroom for better flexibility during the planned investigations. Details of our design and the reasoning for the layout chosen are provided in this paper.
引用
收藏
页码:178 / 196
页数:19
相关论文
共 50 条
  • [1] Conceptual design status of the JT-60SA pellet launching system
    Lang, P. T.
    Nakano, T.
    Pegourie, B.
    Ploeckl, B.
    Sakurai, S.
    [J]. FUSION ENGINEERING AND DESIGN, 2017, 123 : 167 - 170
  • [2] Conceptual design of the MGI system for JT-60SA
    Dibon, M.
    Nakamura, S.
    Matsunaga, G.
    Isayama, A.
    Phillips, G.
    Sozzi, C.
    Davis, S.
    [J]. FUSION ENGINEERING AND DESIGN, 2022, 176
  • [3] Conceptual Design of the JT-60SA Cryogenic System
    Lamaison, V.
    Beauvisage, J.
    Fejoz, P.
    Girard, S.
    Gonvalves, R.
    Gonde, R.
    Heloin, V.
    Michel, F.
    Hoa, C.
    Kamiya, K.
    Roussel, P.
    Vallet, J-C.
    Wanner, M.
    Yoshida, K.
    [J]. ADVANCES IN CRYOGENIC ENGINEERING, 2014, 1573 : 337 - 344
  • [4] Final design of the JT-60SA pellet launching system for simultaneous density and ELM control
    Lang, P. T.
    Nakano, T.
    Davis, S.
    Matsunaga, G.
    Pegourie, B.
    Ploeckl, B.
    Treuterer, W.
    [J]. FUSION ENGINEERING AND DESIGN, 2019, 146 : 91 - 95
  • [5] Conceptual design of JT-60SA cryostat
    Shibama, Y. K.
    Sakurai, S.
    Masaki, K.
    Sukekawa, A. M.
    Kaminaga, A.
    Sakasai, A.
    Matsukawa, M.
    [J]. FUSION ENGINEERING AND DESIGN, 2008, 83 (10-12) : 1605 - 1609
  • [6] Conceptual design of superconducting magnet system for JT-60SA
    Yoshida, K.
    Kizu, K.
    Tsuchiya, K.
    Tamai, H.
    Matsukawa, M.
    Kikuchi, M.
    della Corte, A.
    Muzzi, L.
    Turtu, S.
    Zenobio, A. Di.
    Pizzuto, A.
    Portafaix, C.
    Nicollet, S.
    Lacroix, B.
    Decool, P.
    Duchateau, J-L.
    Zani, L.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2008, 18 (02) : 441 - 446
  • [7] Testbed for the Pellet Launching System for JT-60SA
    Ploeckl, B.
    Lang, P. T.
    Day, Chr.
    Giegerich, Th.
    Phillips, G.
    Piccinni, C.
    Tretter, J.
    [J]. FUSION ENGINEERING AND DESIGN, 2023, 186
  • [8] Conceptual design of magnet system for JT-60 super advanced (JT-60SA)
    Kizu, K.
    Tsuchiya, K.
    Ando, T.
    Sborchia, C.
    Masaki, K.
    Sakurai, S.
    Sukegawa, A. M.
    Tamai, H.
    Fujita, T.
    Matsukawa, M.
    Miura, Y.
    Kikuchi, M.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 1348 - 1352
  • [9] CRYOGENIC REQUIREMENTS FOR THE JT-60SA TOKAMAK
    Michel, F.
    Hitz, D.
    Hoa, C.
    Lamaison, V.
    Kamiya, K.
    Roussel, P.
    Wanner, M.
    Yoshida, K.
    [J]. ADVANCES IN CRYOGENIC ENGINEERING, VOLS 57A AND 57B, 2012, 1434 : 78 - 85
  • [10] Assembly study for JT-60SA tokamak
    Shibanuma, K.
    Arai, T.
    Hasegawa, K.
    Hoshi, R.
    Kamiya, K.
    Kawashima, H.
    Kubo, H.
    Masaki, K.
    Saeki, H.
    Sakurai, S.
    Sakata, S.
    Sakasai, A.
    Sawai, H.
    Shibama, Y. K.
    Tsuchiya, K.
    Tsukao, N.
    Yagyu, J.
    Yoshida, K.
    Kamada, Y.
    Mizumaki, S.
    Hayakawa, A.
    Takigami, H.
    Barabaschi, P.
    Davis, S.
    Peyrot, M.
    Phillips, G.
    [J]. FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) : 705 - 710