On Dirichlet series attached to quasimodular forms

被引:4
|
作者
Bhand, Ajit [1 ]
Shankhadhar, Karam Deo [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal Bypass Rd, Bhopal 462066, Madhya Pradesh, India
关键词
Quasimodular forms; Dirichlet series; Converse theorem; Sign changes;
D O I
10.1016/j.jnt.2019.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Dirichlet series attached to a quasimodular form, study its analytic properties, and generalize Hecke's converse theorem to quasimodular forms of any weight and depth over SL2(Z). Then we discuss some applications of our results to a certain q-series and to sign changes of the Fourier coefficients of quasimodular forms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 50 条
  • [21] Multiple Dirichlet series and automorphic forms
    Chinta, Gautam
    Friedberg, Solomon
    Hoffstein, Jeffrey
    MULTIPLE DIRICHLET SERIES, AUTOMORPHIC FORMS, AND ANALYTIC NUMBER THEORY, 2006, 75 : 3 - +
  • [22] Euler factor of a certain Dirichlet series attached to Siegel Eisenstein series
    Katsurada, H
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2001, 71 (1): : 81 - 90
  • [23] Euler factor of a certain dirichlet series attached to siegel eisenstein Series
    H. Katsurada
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2001, 71 : 81 - 90
  • [24] A converse theorem for quasimodular forms
    Charan, Mrityunjoy
    Meher, Jaban
    Shankhadhar, Karam Deo
    Singh, Ranveer Kumar
    FORUM MATHEMATICUM, 2022, 34 (02) : 547 - 564
  • [25] ON MODULAR FORMS WITH ASSOCIATED DIRICHLET SERIES
    OGG, AP
    ANNALS OF MATHEMATICS, 1969, 89 (01) : 184 - &
  • [26] Integral quadratic forms and Dirichlet series
    B. van Asch
    F. van der Blij
    The Ramanujan Journal, 2010, 22 : 1 - 10
  • [27] Integral quadratic forms and Dirichlet series
    van Asch, B.
    van der Blij, F.
    RAMANUJAN JOURNAL, 2010, 22 (01): : 1 - 10
  • [28] The universality of Dirichlet series attached to finite Abelian groups
    Laurincikas, A
    NUMBER THEORY, 2001, : 179 - 192
  • [29] HILBERT MODULAR AND QUASIMODULAR FORMS
    Lee, Min Ho
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 52 (02) : 177 - 192
  • [30] QUASIMODULAR FORMS AND VECTOR BUNDLES
    Lee, Min Ho
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (03) : 402 - 412