High-Quality CVD-MoS2 Synthesized on Surface-Modified Al2O3 for High-Performance MoS2 Field-Effect Transistors

被引:4
|
作者
Song, Xingjuan [1 ]
Xu, Jingping [1 ]
Liu, Lu [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Optic & Elect Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemical vapor deposition (CVD); molybdenum disulfide (MoS2); H2SO4-treated; high-k gate dielectric; mobility; surface modification; SINGLE-LAYER MOS2; MONOLAYER MOS2; CVD GROWTH;
D O I
10.1109/TED.2020.3021998
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, an effective way of chemical modificationon the dielectric surface (Al2O3) is investigated to chemical vapor deposition (CVD)-grown high-quality monolayer MoS2 and the relevant back- gated FETs are fabricated without MoS2 transfer. As a result, the size of the triangleMoS2 is increased and its quality is improved as the surface of Al2O3 is treated by H2SO4. Furthermore, as compared with the gate dielectrics of the SiO2 and as-deposited Al2O3, the fabricated transistor with the H2SO4-treated Al2O3 as gate dielectric achieves better electrical properties: high carrier mobility of 12.9 cm2/Vs (similar to 10 times higher than the untreated sample, similar to 5.2 times higher than the SiO2 gate-dielectric sample), small subthreshold swing of 110 mV/dec, and high ON/OFF ratio of 3 x 106. The involved mechanisms are attributed to the fact that theH2SO4-treated Al2O3 not only can increase its surface roughness to promote the nucleation and high-quality growth of MoS2 but also can improve the quality of the MoS2/Al2O3 interface. This simple chemical-modification treatment will open up an effective approach of combining the high-crystallinity CVD-MoS2 with the high- k dielectric without MoS2 transfer required.
引用
收藏
页码:5196 / 5200
页数:5
相关论文
共 50 条
  • [21] Largely Enhanced Mobility of MoS2 Field-Effect Transistors by Optimizing O2-Plasma Treatment on MoS2
    Li, Zhao
    Liu, Lu
    Xu, Jing-Ping
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (09) : 4614 - 4617
  • [22] Surface functionalization toward top-gated monolayer MoS2 field-effect transistors with ZrO2/Al2O3 as composite dielectrics
    Guo, Tao
    Wu, Hao
    Su, Xi
    Guo, Quanbing
    Liu, Chang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 871
  • [23] Atomic Layer Deposition of High-Quality Al2O3 Thin Films on MoS2 with Water Plasma Treatment
    Huang, Binjie
    Zheng, Minrui
    Zhao, Yunshan
    Wu, Jing
    Thong, John T. L.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) : 35438 - 35443
  • [24] Interface Engineering for High-Performance Top-Gated MoS2 Field Effect Transistors
    Liao, Lei
    Zou, Xuming
    2014 12TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2014,
  • [25] The role of charge trapping in MoS2/SiO2 and MoS2/hBN field-effect transistors
    Illarionov, Yury Yu
    Rzepa, Gerhard
    Waltl, Michael
    Knobloch, Theresia
    Grill, Alexander
    Furchi, Marco M.
    Mueller, Thomas
    Grasser, Tibor
    2D MATERIALS, 2016, 3 (03):
  • [26] Induction heating effect on the performance of flexible MoS2 field-effect transistors
    Shin, Jong Mok
    Choi, Jun Hee
    Kim, Do-Hyun
    Jang, Ho-Kyun
    Yun, Jinyoung
    Na, Junhong
    Kim, Gyu-Tae
    APPLIED PHYSICS LETTERS, 2017, 111 (15)
  • [27] Laser annealing towards high-performance monolayer MoS2 and WSe2 field effect transistors
    Zhang, Shengnan
    Li, Ruijie
    Yao, Zhixin
    Liao, Peichi
    Li, Yifei
    Tian, Huifeng
    Wang, Jinhuan
    Liu, Peizhi
    Guo, Junjie
    Liu, Kaihui
    Mei, Fuhong
    Liu, Lei
    NANOTECHNOLOGY, 2020, 31 (30)
  • [28] High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects
    Bao, Wenzhong
    Cai, Xinghan
    Kim, Dohun
    Sridhara, Karthik
    Fuhrer, Michael S.
    APPLIED PHYSICS LETTERS, 2013, 102 (04)
  • [29] Flexible High-Temperature MoS2 Field-Effect Transistors and Logic Gates
    Zou, Yixuan
    Li, Peng
    Su, Caizhen
    Yan, Jiawen
    Zhao, Haojie
    Zhang, Zekun
    You, Zheng
    ACS NANO, 2024, 18 (13) : 9627 - 9635
  • [30] Effect of high pressure sulfidation on the morphology and reactivity of MoS2 slabs on MoS2/Al2O3 catalyst prepared with citric acid
    Chen, Jianjun
    Garcia, Elizabeth Dominguez
    Oliviero, Erwan
    Oliviero, Laetitia
    Mauge, Francoise
    JOURNAL OF CATALYSIS, 2016, 339 : 153 - 162