Regularized Newton methods for convex minimization problems with singular solutions

被引:46
|
作者
Li, DH [1 ]
Fukushima, M
Qi, LQ
Yamashita, N
机构
[1] Hunan Univ, Inst Appl Math, Changsha 410082, Peoples R China
[2] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
minimization problem; regularized Newton methods; global convergence; quadratic convergence; unit step;
D O I
10.1023/B:COAP.0000026881.96694.32
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies convergence properties of regularized Newton methods for minimizing a convex function whose Hessian matrix may be singular everywhere. We show that if the objective function is LC2, then the methods possess local quadratic convergence under a local error bound condition without the requirement of isolated nonsingular solutions. By using a backtracking line search, we globalize an inexact regularized Newton method. We show that the unit stepsize is accepted eventually. Limited numerical experiments are presented, which show the practical advantage of the method.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 50 条