Error estimates for total-variation regularized minimization problems with singular dual solutions

被引:2
|
作者
Bartels, Soeren [1 ]
Kaltenbach, Alex [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Inst Appl Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
[2] Albert Ludwigs Univ Freiburg, Inst Appl Math, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
关键词
26A45; 65N15; 65N30; 68U10; FINITE-ELEMENTS; DISCRETIZATIONS;
D O I
10.1007/s00211-022-01324-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix-Raviart element require the existence of a Lipschitz continuous dual solution, which is not generally given. We provide analytic proofs showing that the Lipschitz continuity of a dual solution is not necessary, in general. Using the Lipschitz truncation technique, we, in addition, derive error estimates that depend directly on the Sobolev regularity of a given dual solution.
引用
收藏
页码:881 / 906
页数:26
相关论文
共 50 条
  • [1] Error estimates for total-variation regularized minimization problems with singular dual solutions
    Sören Bartels
    Alex Kaltenbach
    [J]. Numerische Mathematik, 2022, 152 : 881 - 906
  • [2] Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems
    Bartels, Soeren
    Tovey, Robert
    Wassmer, Friedrich
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (06) : 1871 - 1888
  • [3] Exact solutions of infinite dimensional total-variation regularized problems
    Flinth, Axel
    Weiss, Pierre
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (03) : 407 - 443
  • [4] Regularized Newton Methods for Convex Minimization Problems with Singular Solutions
    Dong-Hui Li
    Masao Fukushima
    Liqun Qi
    Nobuo Yamashita
    [J]. Computational Optimization and Applications, 2004, 28 : 131 - 147
  • [5] Regularized Newton methods for convex minimization problems with singular solutions
    Li, DH
    Fukushima, M
    Qi, LQ
    Yamashita, N
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 28 (02) : 131 - 147
  • [6] Remarks on estimates in the total-variation metric
    Čekanavičius V.
    [J]. Lithuanian Mathematical Journal, 2000, 40 (1) : 1 - 13
  • [7] Broken Sobolev space iteration for total variation regularized minimization problems
    Bartels, Soeren
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (02) : 493 - 502
  • [8] A HYBRID TOTAL-VARIATION MINIMIZATION APPROACH TO COMPRESSED SENSING
    Wang, Yong
    Liang, Dong
    Chang, Yuchou
    Ying, Leslie
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 74 - 77
  • [9] TOTAL-VARIATION REGULARIZED MOTION ESTIMATION IN A PERIODIC IMAGE SEQUENCE
    Qi, Wenyuan
    Niu, Xiaofeng
    Yang, Yongyi
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [10] REGULARIZED ESTIMATES IN PROBLEMS WITH SINGULAR VARIANCE MATRICES
    MELESHKO, VI
    SEKT, SS
    [J]. AUTOMATION AND REMOTE CONTROL, 1988, 49 (03) : 293 - 297