CNN-Based Cognitive Radar Array Selection

被引:0
|
作者
Elbir, Ahmet M. [1 ]
Mishra, Kumar Vijay [2 ]
Eldar, Yonina C. [2 ]
机构
[1] Duzce Univ, Dept Elect & Elect Engn, Duzce, Turkey
[2] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect Engn, Haifa, Israel
基金
欧盟地平线“2020”;
关键词
Cognitive radar; antenna selection; deep learning; convolutional neural networks; DoA estimation; ANTENNA SELECTION; MIMO;
D O I
10.1109/radar.2019.8835626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In cognitive radar, it may be desired to select an optimal subarray from a full antenna array in each scan to reduce the cost and computational complexity. Previous works on antenna selection rely on mostly optimization or greedy search methods. In this paper, we introduce a deep learning approach for antenna selection in a cognitive radar scenario. We design a deep convolutional neural network (CNN) to select the best subarray for direction-of-arrival estimation for each scan. The CNN accepts the array covariance matrix as its input and, unlike previous works, does not require prior knowledge about the target location. The performance of the proposed CNN approach is evaluated through numerical simulations. In particular, we show that it provides more accurate results than conventional support vector machines.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] CNN-Based Moving Target Detection for Airborne Radar With Controllable False Alarm Module
    Hou, Yunfei
    Zhang, Yingnan
    Gui, Wenzhu
    Wang, Minghai
    Dong, Wei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [22] A Novel CNN-Based Radar Reflectivity Retrieval Network Using Geostationary Satellite Observations
    Si, Jianwei
    Li, Xingwang
    Chen, Haonan
    Han, Lei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [23] CNN-BASED PARAMETER SELECTION FOR FAST VVC INTRA-PICTURE ENCODING
    Tech, Gerhard
    Pfaff, Jonathan
    Schwarz, Heiko
    Helle, Philipp
    Wieckowski, Adam
    Marpe, Detlev
    Wiegand, Thomas
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2109 - 2113
  • [24] Sub-Array Hybrid Precoding for Massive MIMO Systems: A CNN-Based Approach
    Chen, Kai
    Yang, Jing
    Li, Qiang
    Ge, Xiaohu
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (01) : 191 - 195
  • [25] CNN-based Android Malware Detection
    Ganesh, Meenu
    Pednekar, Priyanka
    Prabhuswamy, Pooja
    Nair, Divyashri Sreedharan
    Park, Younghee
    Jeon, Hyeran
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON SOFTWARE SECURITY AND ASSURANCE (ICSSA), 2017, : 60 - 65
  • [26] CNN-based Tree Model Extraction
    Ben Alaya, Karim
    Czuni, Laszlo
    [J]. PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 616 - 620
  • [27] Hybrid CNN-based Recommendation System
    Alrashidi, Muhammad
    Ibrahim, Roliana
    Selamat, Ali
    [J]. BAGHDAD SCIENCE JOURNAL, 2024, 21 (02) : 592 - 599
  • [28] CNN-based Deblurring of Terahertz Images
    Ljubenovic, Marina
    Bazrafkan, Shabab
    De Beenhouwer, Jan
    Sijbers, Jan
    [J]. VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP, 2020, : 323 - 330
  • [29] CNN-based algorithm for drusen identification
    Checco, Paolo
    Corinto, Fernando
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2181 - +
  • [30] CNN-based Rescaling Factor Estimation
    Liu, Chang
    Kirchner, Matthias
    [J]. IH&MMSEC '19: PROCEEDINGS OF THE ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2019, : 119 - 124