CNN-Based Cognitive Radar Array Selection

被引:0
|
作者
Elbir, Ahmet M. [1 ]
Mishra, Kumar Vijay [2 ]
Eldar, Yonina C. [2 ]
机构
[1] Duzce Univ, Dept Elect & Elect Engn, Duzce, Turkey
[2] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect Engn, Haifa, Israel
基金
欧盟地平线“2020”;
关键词
Cognitive radar; antenna selection; deep learning; convolutional neural networks; DoA estimation; ANTENNA SELECTION; MIMO;
D O I
10.1109/radar.2019.8835626
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In cognitive radar, it may be desired to select an optimal subarray from a full antenna array in each scan to reduce the cost and computational complexity. Previous works on antenna selection rely on mostly optimization or greedy search methods. In this paper, we introduce a deep learning approach for antenna selection in a cognitive radar scenario. We design a deep convolutional neural network (CNN) to select the best subarray for direction-of-arrival estimation for each scan. The CNN accepts the array covariance matrix as its input and, unlike previous works, does not require prior knowledge about the target location. The performance of the proposed CNN approach is evaluated through numerical simulations. In particular, we show that it provides more accurate results than conventional support vector machines.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Fast Array Ground Penetrating Radar Localization by CNN-Based Optimization Method
    Zhou, Changyu
    Bai, Xu
    Yi, Li
    Shah, Munawar
    Sato, Motoyuki
    Tong, Xiaohua
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4663 - 4673
  • [2] Model Selection CNN-based VVC Quality Enhancement
    Nasiri, Fatemeh
    Hamidouche, Wassim
    Morin, Luce
    Dhollande, Nicolas
    Cocherel, Gildas
    [J]. 2021 PICTURE CODING SYMPOSIUM (PCS), 2021, : 16 - 20
  • [3] CNN-based user selection in MIMO broadcasting channel
    Han, Seongbae
    Kong, Gyuyeol
    Kim, Dongwook
    Choi, Sooyong
    [J]. 2019 34TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2019), 2019, : 438 - 439
  • [4] CNN-based burned area mapping using radar and optical data
    Belenguer-Plomer, Miguel A.
    Tanase, Mihai A.
    Chuvieco, Emilio
    Bovolo, Francesca
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 260
  • [5] Predictor Selection for CNN-based Statistical Downscaling of Monthly Precipitation
    Dangfu YANG
    Shengjun LIU
    Yamin HU
    Xinru LIU
    Jiehong XIE
    Liang ZHAO
    [J]. Advances in Atmospheric Sciences, 2023, 40 (06) : 1117 - 1131
  • [6] Predictor Selection for CNN-based Statistical Downscaling of Monthly Precipitation
    Yang, Dangfu
    Liu, Shengjun
    Hu, Yamin
    Liu, Xinru
    Xie, Jiehong
    Zhao, Liang
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2023, 40 (06) : 1117 - 1131
  • [7] CNN-based Foothold Selection for Mechanically Adaptive Soft Foot
    Bednarek, Jakub
    Maalouf, Noel
    Pollayil, Mathew J.
    Garabini, Manolo
    Catalano, Manuel G.
    Grioli, Giorgio
    Belter, Dominik
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10225 - 10232
  • [8] Predictor Selection for CNN-based Statistical Downscaling of Monthly Precipitation
    Dangfu Yang
    Shengjun Liu
    Yamin Hu
    Xinru Liu
    Jiehong Xie
    Liang Zhao
    [J]. Advances in Atmospheric Sciences, 2023, 40 : 1117 - 1131
  • [9] Accurate Deep CNN-Based Waveform Recognition for Intelligent Radar Systems
    Huynh-The, Thien
    Hua, Cam-Hao
    Doan, Van-Sang
    Pham, Quoc-Viet
    Kim, Dong-Seong
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (09) : 2938 - 2942
  • [10] Salient Feature Selection for CNN-Based Visual Place Recognition
    Chen, Yutian
    Gan, Wenyan
    Jiao, Shanshan
    Xu, Youwei
    Feng, Yuntian
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (12) : 3102 - 3107