Growth Pattern of Homogeneous and Heterogeneous Nucleation in High-Entropy FeNiCrCoCu Alloys

被引:14
|
作者
Gao, Yue [1 ]
Wang, Bei [1 ]
Huang, Jin [1 ]
Gao, Tinghong [1 ]
Yang, Wensheng [1 ]
Xie, Quan [1 ]
Chen, Qian [1 ]
机构
[1] Guizhou Univ, Inst Adv Type Optoelect Mat & Technol, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS SIMULATION; CRYSTALLIZATION; EVOLUTION; SOLIDIFICATION; SI;
D O I
10.1021/acs.cgd.1c01499
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy alloys (HEAs) consist of five or more metallic elements in equal or near-atomic proportions to form multicomponent alloys with high configurational entropy. Recently, nanostructured HEAs have attracted considerable attention from both academia and industry for their extraordinary properties. Nucleation during solidification directly affects the properties of metals and alloys. Although experimental techniques to study the microstructure and nucleation growth during metal solidification continue to make remarkable developments, many unanswered questions remain in this field. Molecular dynamics (MD) simulation is an effective tool to describe the nucleation mechanism and microstructural evolution of HEAs during solidification processes. In this paper, we explore the atomic origins of the homogeneous and heterogeneous nucleation in the FeNiCrCoCu HEA using classical MD simulations. The results show an obvious difference between homogeneous and heterogeneous nucleation. A new growth pattern of crystals in HEA was discovered during the heterogeneous nucleation process. The mechanisms of heterogeneous and homogeneous nucleation and their control factors are revealed through the evolution of several crystalline structures and dislocation density.
引用
收藏
页码:2417 / 2425
页数:9
相关论文
共 50 条
  • [41] On the diffusion in high-entropy alloys
    Beke, D. L.
    Erdelyi, G.
    MATERIALS LETTERS, 2016, 164 : 111 - 113
  • [42] Hexagonal High-entropy Alloys
    Feuerbacher, Michael
    Heidelmann, Markus
    Thomas, Carsten
    MATERIALS RESEARCH LETTERS, 2015, 3 (01): : 1 - 6
  • [43] Design of High-Entropy Alloys
    Stepanov, Nikita
    Zherebtsov, Sergey
    METALS, 2022, 12 (06)
  • [44] Approach to homogeneous two-dimensional multicomponent materials and their high-entropy alloys
    Que, Haifeng
    Li, Bixuan
    Gong, Yongji
    NATURE SYNTHESIS, 2025,
  • [45] Molecular dynamics simulations of tensile response for FeNiCrCoCu high-entropy alloy with voids
    Gao, Tinghong
    Song, Han
    Wang, Bei
    Gao, Yue
    Liu, Yutao
    Xie, Quan
    Chen, Qian
    Xiao, Qingquan
    Liang, Yongchao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 237
  • [46] Do "high-entropy alloys" have high entropy?
    Kucza, Witold
    JOURNAL OF MATERIALS RESEARCH, 2025,
  • [47] Grain refinement induced by grain boundary segregation in FeNiCrCoCu high-entropy alloys using molecular dynamics simulation of nanoindentation
    Wang, Yinuo
    Qi, Yuming
    He, Tengwu
    Feng, Miaolin
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 310
  • [48] Fabricating Homogeneous FeCoCrNi High-Entropy Alloys via SLM In Situ Alloying
    Hou, Yaqing
    Su, Hang
    Zhang, Hao
    Wang, Xuandong
    Wang, Changchang
    METALS, 2021, 11 (06)
  • [49] Defects Act in an "Introverted" Manner in FeNiCrCoCu High-Entropy Alloy under Primary Damage
    Zhang, Weiwei
    Kan, Dongxiao
    Liang, Jing
    Li, Yanchao
    Bai, Wei
    Jiao, Benqi
    Li, Jianfeng
    Zhang, Wen
    METALS, 2024, 14 (03)
  • [50] Influence of chemical composition of the surface layer on the nucleation of plasticity in CoCrFeMnNi high-entropy alloys
    Korchuganov, A. V.
    Lutsenko, I. S.
    Zolnikov, K. P.
    XXXIV INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER, 2020, 1556