Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities

被引:373
|
作者
Dufferwiel, S. [1 ]
Schwarz, S. [1 ]
Withers, F. [2 ]
Trichet, A. A. P. [3 ]
Li, F. [1 ]
Sich, M. [1 ]
Del Pozo-Zamudio, O. [1 ]
Clark, C. [4 ]
Nalitov, A. [5 ,6 ]
Solnyshkov, D. D. [5 ]
Malpuech, G. [5 ]
Novoselov, K. S. [2 ]
Smith, J. M. [3 ]
Skolnick, M. S. [1 ]
Krizhanovskii, D. N. [1 ]
Tartakovskii, A. I. [1 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[3] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[4] Helia Photon, Livingston EH54 7EJ, Scotland
[5] Univ Blaise Pascal, Inst Pascal, F-63177 Aubiere, France
[6] Univ Southampton, Phys & Astron, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
LIGHT-EMITTING-DIODES; LASERS; MOS2; SPIN;
D O I
10.1038/ncomms9579
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings
    Huiqin Zhang
    Bhaskar Abhiraman
    Qing Zhang
    Jinshui Miao
    Kiyoung Jo
    Stefano Roccasecca
    Mark W. Knight
    Artur R. Davoyan
    Deep Jariwala
    [J]. Nature Communications, 11
  • [42] Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings
    Zhang, Huiqin
    Abhiraman, Bhaskar
    Zhang, Qing
    Miao, Jinshui
    Jo, Kiyoung
    Roccasecca, Stefano
    Knight, Mark W.
    Davoyan, Artur R.
    Jariwala, Deep
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [43] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [44] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [45] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2
  • [46] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    [J]. Nature, 2013, 499 : 419 - 425
  • [47] Polaritons in van der Waals materials
    Basov, D. N.
    Fogler, M. M.
    Garcia de Abajo, F. J.
    [J]. SCIENCE, 2016, 354 (6309)
  • [48] Nonlinear Rydberg exciton-polaritons in Cu2O microcavities
    Maxim Makhonin
    Anthonin Delphan
    Kok Wee Song
    Paul Walker
    Tommi Isoniemi
    Peter Claronino
    Konstantinos Orfanakis
    Sai Kiran Rajendran
    Hamid Ohadi
    Julian Heckötter
    Marc Assmann
    Manfred Bayer
    Alexander Tartakovskii
    Maurice Skolnick
    Oleksandr Kyriienko
    Dmitry Krizhanovskii
    [J]. Light: Science & Applications, 13
  • [49] Magnetic field effect on polarization and dispersion of exciton-polaritons in planar microcavities
    Solnyshkov, D. D.
    Glazov, M. M.
    Shelykh, I. A.
    Kavokin, A. V.
    Ivchenko, E. L.
    Malpuech, G.
    [J]. PHYSICAL REVIEW B, 2008, 78 (16):
  • [50] Exciton-Polaritons and Their Bose-Einstein Condensates in Organic Semiconductor Microcavities
    Jiang, Zhengjun
    Ren, Ang
    Yan, Yongli
    Yao, Jiannian
    Zhao, Yong Sheng
    [J]. ADVANCED MATERIALS, 2022, 34 (04)