Self-Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation

被引:221
|
作者
Zhang, Li Mei [1 ]
He, Yuan [1 ]
Cheng, Sibo [1 ]
Sheng, Hao [1 ]
Dai, Keren [2 ]
Zheng, Wen Jiang [3 ]
Wang, Mei Xiang [3 ]
Chen, Zhen Shan [1 ]
Chen, Yong Mei [1 ,4 ]
Suo, Zhigang [5 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Sch Aerosp, Xian 710049, Shaanxi, Peoples R China
[2] Nanjing Univ Sci & Technol, ZNDY Ministerial Key Lab, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat Phys, Sch Sci, Xian 710049, Shaanxi, Peoples R China
[4] Shaanxi Univ Sci & Technol, Coll Bioresources Chem & Mat Engn, Natl Demonstrat Ctr Expt Light Chem Engn Educ, Xian 710021, Shaanxi, Peoples R China
[5] Harvard Univ, Kavli Inst Bionano Sci & Technol, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
中国国家自然科学基金; 对外科技合作项目(国际科技项目);
关键词
adhesion; ionogel nanocomposites; self-healing; strain sensors; stretchability; FIBER; POLYMERIZATION; PAPER; SKIN;
D O I
10.1002/smll.201804651
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fabricating a strain sensor that can detect large deformation over a curved object with a high sensitivity is crucial in wearable electronics, human/machine interfaces, and soft robotics. Herein, an ionogel nanocomposite is presented for this purpose. Tuning the composition of the ionogel nanocomposites allows the attainment of the best features, such as excellent self-healing (>95% healing efficiency), strong adhesion (347.3 N m(-1)), high stretchability (2000%), and more than ten times change in resistance under stretching. Furthermore, the ionogel nanocomposite-based sensor exhibits good reliability and excellent durability after 500 cycles, as well as a large gauge factor of 20 when it is stretched under a strain of 800-1400%. Moreover, the nanocomposite can self-heal under arduous conditions, such as a temperature as low as -20 degrees C and a temperature as high as 60 degrees C. All these merits are achieved mainly due to the integration of dynamic metal coordination bonds inside a loosely cross-linked network of ionogel nanocomposite doped with Fe3O4 nanoparticles.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] A stretchable conductive elastomer sensor with self-healing and highly linear strain for human movement detection and pressure response
    Zhang, Yao
    Yuan, Yizhong
    Yu, Huimei
    Cai, Chunhua
    Sun, Jinyu
    Tian, Xiaohui
    MATERIALS HORIZONS, 2024, 11 (16) : 3911 - 3920
  • [32] Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor
    Li, Xinjian
    Li, Xiaomeng
    Yan, Manqing
    Wang, Qiyang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242
  • [33] A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human motion monitoring
    Sun, Jingxian
    Yuan, Yixin
    Lu, Guoqiang
    Li, Lingfeng
    Zhu, Xiaoqun
    Nie, Jun
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (36) : 11244 - 11250
  • [34] A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor
    Liu, Shuqi
    Zheng, Rongmin
    Chen, Song
    Wu, Yunhui
    Liu, Haizhou
    Wang, Pingping
    Deng, Zhifu
    Liu, Lan
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (15) : 4183 - 4190
  • [35] Highly Stretchable, Adhesive, and Self-Healing Silk Fibroin-Dopted Hydrogels for Wearable Sensors
    Zhao, Li
    Zhao, Jizhong
    Zhang, Fan
    Xu, Zijie
    Chen, Fan
    Shi, Yating
    Hou, Chen
    Huang, Yicheng
    Lin, Changjian
    Yu, Rui
    Guo, Wenxi
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (10)
  • [36] Highly Stretchable and Fast Self-Healing Luminescent Materials
    Yang, Jing
    Zhang, Zhihao
    Yan, Yaqian
    Liu, Shuo
    Li, Zhiqiang
    Wang, Yige
    Li, Huanrong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) : 13239 - 13247
  • [37] A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor
    Wang, Huiqiang
    Yu, Xin
    Tang, Xing
    Sun, Yong
    Zeng, Xianhai
    Lin, Lu
    CELLULOSE, 2022, 29 (01) : 341 - 354
  • [38] A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor
    Huiqiang Wang
    Xin Yu
    Xing Tang
    Yong Sun
    Xianhai Zeng
    Lu Lin
    Cellulose, 2022, 29 : 341 - 354
  • [39] Highly stretchable, strain-stiffening, self-healing ionic conductors for wearable sensors
    Huang, Zhenkai
    Deng, Zhishuang
    Liu, Xiang
    Huang, Tianrui
    Hu, Yongjing
    Chen, Yutong
    Liu, Yanhui
    Guo, Zi-Hao
    Yue, Kan
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [40] Design and synthesis of highly stretchable self-healing materials
    Wang, Hongqin
    Su, Zhiming
    Li, Chenghui
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (01): : 37 - 52