Combinatorial therapy discovery using mixed integer linear programming

被引:38
|
作者
Pang, Kaifang [1 ,2 ,3 ]
Wan, Ying-Wooi [1 ,2 ,4 ]
Choi, William T. [1 ,2 ]
Donehower, Lawrence A. [5 ]
Sun, Jingchun [6 ]
Pant, Dhruv [7 ]
Liu, Zhandong [1 ,2 ,3 ]
机构
[1] Baylor Coll Med, Computat & Integrat Biomed Res Ctr, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Pediat Neurol, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Obstet & Gynaecol, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
[7] Univ Penn, Dept Canc Biol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DRUG-COMBINATIONS; PARKINSONS-DISEASE; CANDIDATE GENE; SCHIZOPHRENIA; STREPTOKINASE; HYPERTENSION; TRIAMTERENE; SELEGILINE; INHIBITION; ALGORITHMS;
D O I
10.1093/bioinformatics/btu046
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Results: Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set.
引用
收藏
页码:1456 / 1463
页数:8
相关论文
共 50 条
  • [11] BINARY IMAGE SYNTHESIS USING MIXED LINEAR INTEGER PROGRAMMING
    SALEH, S
    SALEH, B
    DELEONE, R
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (09) : 1252 - 1257
  • [12] Adder model for mixed integer linear programming
    Navarro, H.
    Nooshabadi, S.
    Montiel-Nelson, J. A.
    [J]. ELECTRONICS LETTERS, 2009, 45 (07) : 348 - U13
  • [13] Mixed Integer Linear Programming Formulation Techniques
    Vielma, Juan Pablo
    [J]. SIAM REVIEW, 2015, 57 (01) : 3 - 57
  • [14] Linear and Mixed Integer Programming for Portfolio Optimization
    Zilinskas, Antanas
    [J]. INTERFACES, 2017, 47 (01) : 108 - 109
  • [15] Leveraging Linear and Mixed Integer Programming for SMT
    King, Tim
    Barrett, Clark
    Tinelli, Cesare
    [J]. 2014 FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD), 2014, : 139 - 146
  • [16] Mixed integer linear programming and building retrofits
    Gustafsson, SI
    [J]. ENERGY AND BUILDINGS, 1998, 28 (02) : 191 - 196
  • [17] THE MIXED INTEGER LINEAR BILEVEL PROGRAMMING PROBLEM
    MOORE, JT
    BARD, JF
    [J]. OPERATIONS RESEARCH, 1990, 38 (05) : 911 - 921
  • [18] Generation of fiducial marker dictionaries using Mixed Integer Linear Programming
    Garrido-Jurado, S.
    Munoz-Salinas, R.
    Madrid-Cuevas, F. J.
    Medina-Carnicer, R.
    [J]. PATTERN RECOGNITION, 2016, 51 : 481 - 491
  • [19] An Algorithm for Hardware/Software Partitioning Using Mixed Integer Linear Programming
    Ralf Niemann
    Peter Marwedel
    [J]. Design Automation for Embedded Systems, 1997, 2 : 165 - 193
  • [20] Optimal Coordination of Overcurrent Relays Using Mixed Integer Linear Programming
    Kida, A. A.
    Gallego, L. A.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (03) : 1289 - 1295