Combinatorial therapy discovery using mixed integer linear programming

被引:38
|
作者
Pang, Kaifang [1 ,2 ,3 ]
Wan, Ying-Wooi [1 ,2 ,4 ]
Choi, William T. [1 ,2 ]
Donehower, Lawrence A. [5 ]
Sun, Jingchun [6 ]
Pant, Dhruv [7 ]
Liu, Zhandong [1 ,2 ,3 ]
机构
[1] Baylor Coll Med, Computat & Integrat Biomed Res Ctr, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Pediat Neurol, Houston, TX 77030 USA
[4] Baylor Coll Med, Dept Obstet & Gynaecol, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA
[6] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
[7] Univ Penn, Dept Canc Biol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DRUG-COMBINATIONS; PARKINSONS-DISEASE; CANDIDATE GENE; SCHIZOPHRENIA; STREPTOKINASE; HYPERTENSION; TRIAMTERENE; SELEGILINE; INHIBITION; ALGORITHMS;
D O I
10.1093/bioinformatics/btu046
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Results: Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set.
引用
收藏
页码:1456 / 1463
页数:8
相关论文
共 50 条
  • [1] Discovery of Implicit Relationships from Data Using Linear Programming and Mixed Integer Linear Programming
    Quang Nhat Huynh
    Singh, Hemant Kumar
    Ray, Tapabrata
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 558 - 561
  • [2] Combinatorial benders' cuts for mixed-integer linear programming
    Codato, Gianni
    Fischetti, Matteo
    [J]. OPERATIONS RESEARCH, 2006, 54 (04) : 756 - 766
  • [3] Process discovery using integer linear programming
    van der Werf, J. M. E. M.
    van Dongen, B. F.
    Hurkens, C. A. J.
    Serebrenik, A.
    [J]. APPLICATIONS AND THEORY OF PETRI NETS, 2008, 5062 : 368 - 387
  • [4] Process Discovery using Integer Linear Programming
    van der Werf, J. M. E. M.
    van Dongen, B. F.
    Hurkens, C. A. J.
    Serebrenik, A.
    [J]. FUNDAMENTA INFORMATICAE, 2009, 94 (3-4) : 387 - 412
  • [5] POLYHEDRAL ANNEXATION IN MIXED INTEGER AND COMBINATORIAL PROGRAMMING
    GLOVER, F
    [J]. MATHEMATICAL PROGRAMMING, 1975, 9 (02) : 161 - 188
  • [6] Entry optimization using mixed integer linear programming
    Seungmin Baek
    Sungwon Moon
    H. Jin Kim
    [J]. International Journal of Control, Automation and Systems, 2016, 14 : 282 - 290
  • [7] Entry Optimization using Mixed Integer Linear Programming
    Baek, Seungmin
    Moon, Sungwon
    Kim, H. Jin
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 282 - 290
  • [8] Temporal Pattern Localization using Mixed Integer Linear Programming
    Zhao, Rui
    Schalk, Gerwin
    Ji, Qiang
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1361 - 1365
  • [9] Irrigation scheduling using mixed-integer linear programming
    Anwar, AA
    Clarke, D
    [J]. JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2001, 127 (02) : 63 - 69
  • [10] Fugitive Emission Reduction Using Mixed Integer Linear Programming
    A-Jalil, S.
    Hashim, H.
    Hassim, M. H.
    Anwar, J.
    Sapiaa, N. A. H.
    [J]. 2011 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY ENGINEERING (ICAEE), 2012, 14 : 1870 - 1876