Analysis of expression quantitative trait loci (eQTL) provides a means for detecting transcriptional regulatory relationships at a genome-wide scale. Here we explain the eQTL analysis pipeline, we introduce publicly available tools for the statistical analysis, and we discuss issues that might complicate the eQTL mapping process. The detection and interpretation of eQTL requires careful consideration of a range of potentially confounding effects. Particularly population substructure and batch effects may lead to the detection of many false-positive eQTL if not accounted for. Traditionally, most eQTL mapping methods only check for the correlation of single loci with gene expression. In Order to detect (epistatic) interactions between distant genetic loci one has to take into account several loci simultaneously. Here, we present the Random Forest regression method as a way of accounting for interacting loci. Next, we introduce analysis methods aiding the biological interpretation of detected eQTL. For example, the notion of local (cis) and distant (trans) eQTL has been very useful for interpreting the causes and implications of eQTL in many studies. In addition, Bayesian networks have been used extensively to infer causal relationships among eQTL and between eQTL and other genetic associations (e.g. disease associated loci). Also, the integration of eQTL with complementary information such as physical protein interaction data may significantly improve statistical power and provide insight into possible molecular mechanisms linking the regulator to its target gene. The eQTL approach is potentially very powerful for the analysis of regulatory pathways affecting disease susceptibility and other relevant traits. However, careful analysis is required to unleash its full potential. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Univ Sao Paulo, Programa Posgrad Genet & Melhoramento Plantas, Escola Super Agr Luiz de Queiroz, Piracicaba, SP, BrazilCtr APTA Citros Sylvio Moreira, Inst Agron Campinas, Cordeiropolis, SP, Brazil
机构:
Univ Pittsburgh, Carnegie Mellon PhD Program Computat Biol, Pittsburgh, PA USAUniv Pittsburgh, Carnegie Mellon PhD Program Computat Biol, Pittsburgh, PA USA
Partha, Raghavendran
Bronson, Paola G.
论文数: 0引用数: 0
h-index: 0
机构:
Biogen, Res & Early Dev, Cambridge, MA USAUniv Pittsburgh, Carnegie Mellon PhD Program Computat Biol, Pittsburgh, PA USA
Bronson, Paola G.
Sangurdekar, Dipen
论文数: 0引用数: 0
h-index: 0
机构:
Biogen, Res & Early Dev, Cambridge, MA USAUniv Pittsburgh, Carnegie Mellon PhD Program Computat Biol, Pittsburgh, PA USA
机构:
Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, JapanNatl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
Akiyama, Shintaro
Higaki, Sayuri
论文数: 0引用数: 0
h-index: 0
机构:
Natl Hosp Org Nagoya Med Ctr, Clin Res Ctr, Nagoya, Aichi 4600001, JapanNatl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
Higaki, Sayuri
Ochiya, Takahiro
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Med Univ, Inst Med Sci, Tokyo 1608402, JapanNatl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
Ochiya, Takahiro
Ozaki, Kouichi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
RIKEN Ctr Integrat Med Sci, Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, JapanNatl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
Ozaki, Kouichi
Niida, Shumpei
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, JapanNatl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
Niida, Shumpei
Shigemizu, Daichi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
RIKEN Ctr Integrat Med Sci, Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
Tokyo Med & Dent Univ TMDU, Med Res Inst, Tokyo 1138510, JapanNatl Ctr Geriatr & Gerontol, Med Genome Ctr, Res Inst, Obu, Aichi 4748511, Japan
Shigemizu, Daichi
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION,
2021,