Some sharp performance bounds for least squares regression with L1 regularization

被引:123
|
作者
Zhang, Tong [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
来源
ANNALS OF STATISTICS | 2009年 / 37卷 / 5A期
关键词
L-1; regularization; Lasso; regression; sparsity; variable selection; parameter estimation; STATISTICAL ESTIMATION; DANTZIG SELECTOR; SPARSITY; LARGER; LASSO;
D O I
10.1214/08-AOS659
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive sharp performance bounds for least squares regression With L-1 regularization front parameter estimation accuracy and feature selection quality perspectives. The main result proved for L-1 regularization extends it similar result in [Ann. Statist. 35 (2007) 2313-2351] for the Dantzig selector. It gives an affirmative answer to an open question in [Ann. Statist. 35 (2007) 2358-2364]. Moreover, the result leads to an extended view of feature selection that allows less restrictive conditions than some recent work. Based on the theoretical insights, a novel two-stage L-1-regularization procedure with selective penalization is analyzed. It is shown that if the target parameter vector can be decomposed as the sum of a sparse parameter vector with large coefficients and another less sparse vector with relatively small coefficients, then the two-stage procedure can lead to improved performance.
引用
收藏
页码:2109 / 2144
页数:36
相关论文
共 50 条
  • [41] A recursive least squares algorithm with ℓ1 regularization for sparse representation
    Di Liu
    Simone Baldi
    Quan Liu
    Wenwu Yu
    Science China Information Sciences, 2023, 66
  • [42] A recursive least squares algorithm with ?1 regularization for sparse representation
    Di LIU
    Simone BALDI
    Quan LIU
    Wenwu YU
    Science China(Information Sciences), 2023, 66 (02) : 281 - 282
  • [43] 3-D Image-Domain Least-Squares Reverse Time Migration With L1 Norm Constraint and Total Variation Regularization
    Zhang, Wei
    Gao, Jinghuai
    Cheng, Yuanfeng
    Su, Chaoguang
    Liang, Hongxian
    Zhu, Jianbing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] ON SOME ASYMPTOTIC UNCERTAINTY BOUNDS IN RECURSIVE LEAST-SQUARES IDENTIFICATION
    GUNNARSSON, S
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) : 1685 - 1688
  • [45] A Survey of L1 Regression
    Vidaurre, Diego
    Bielza, Concha
    Larranaga, Pedro
    INTERNATIONAL STATISTICAL REVIEW, 2013, 81 (03) : 361 - 387
  • [46] On L1 regression coefficients
    Hong, Chong Sun
    Choi, Hyun Jip
    Communications in Statistics Part B: Simulation and Computation, 1997, 26 (02): : 531 - 537
  • [47] L1 bounds in normal approximation
    Goldstein, Larry
    ANNALS OF PROBABILITY, 2007, 35 (05): : 1888 - 1930
  • [48] Nonparametric regression function estimation using interaction least squares splines and complexity regularization
    Kohler, M
    METRIKA, 1998, 47 (02) : 147 - 163
  • [49] LOWER BOUNDS FOR L1 DISCREPANCY
    Vagharshakyan, Armen
    MATHEMATIKA, 2013, 59 (02) : 365 - 379
  • [50] Nonparametric regression function estimation using interaction least squares splines and comlexity regularization
    Michael Kohler
    Metrika, 1998, 47 : 147 - 163