cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs

被引:18
|
作者
Tolstoganov, Ivan [1 ]
Bankevich, Anton [2 ]
Chen, Zhoutao [3 ]
Pevzner, Pavel A. [1 ,2 ]
机构
[1] St Petersburg State Univ, Inst Translat Biomed, Ctr Algorithm Biotechnol, St Petersburg, Russia
[2] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[3] Universal Sequencing Technol Corp, Carlsbad, CA USA
基金
俄罗斯科学基金会;
关键词
DNA EXTRACTION; GENOME; ACCURATE;
D O I
10.1093/bioinformatics/btz349
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The recently developed barcoding-based synthetic long read (SLR) technologies have already found many applications in genome assembly and analysis. However, although some new barcoding protocols are emerging and the range of SLR applications is being expanded, the existing SLR assemblers are optimized for a narrow range of parameters and are not easily extendable to new barcoding technologies and new applications such as metagenomics or hybrid assembly. Results We describe the algorithmic challenge of the SLR assembly and present a cloudSPAdes algorithm for SLR assembly that is based on analyzing the de Bruijn graph of SLRs. We benchmarked cloudSPAdes across various barcoding technologies/applications and demonstrated that it improves on the state-of-the-art SLR assemblers in accuracy and speed. Availability and implementation Source code and installation manual for cloudSPAdes are available at https://github.com/ablab/spades/releases/tag/cloudspades-paper. Supplementary Information Supplementary data are available at Bioinformatics online.
引用
收藏
页码:I61 / I70
页数:10
相关论文
共 50 条
  • [41] Consensus on de Bruijn graphs
    Yan, G.
    Fu, Z. -Q.
    Chen, G.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 63 (04): : 515 - 520
  • [42] Ariadne: synthetic long read deconvolution using assembly graphs
    Lauren Mak
    Dmitry Meleshko
    David C. Danko
    Waris N. Barakzai
    Salil Maharjan
    Natan Belchikov
    Iman Hajirasouliha
    Genome Biology, 24
  • [43] Ariadne: synthetic long read deconvolution using assembly graphs
    Mak, Lauren
    Meleshko, Dmitry
    Danko, David C.
    Barakzai, Waris N.
    Maharjan, Salil
    Belchikov, Natan
    Hajirasouliha, Iman
    GENOME BIOLOGY, 2023, 24 (01)
  • [44] Overlap graphs and de Bruijn graphs: data structures for de novo genome assembly in the big data era
    Rizzi, Raffaella
    Beretta, Stefano
    Patterson, Murray
    Pirola, Yuri
    Previtali, Marco
    Della Vedova, Gianluca
    Bonizzoni, Paola
    QUANTITATIVE BIOLOGY, 2019, 7 (04) : 278 - 292
  • [45] Rooted Tree Graphs and de Bruijn Graphs
    Mayhew, Gregory L.
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [46] Overlap graphs and de Bruijn graphs:data structures for de novo genome assembly in the big data era
    Raffaella Rizzi
    Stefano Beretta
    Murray Patterson
    Yuri Pirola
    Marco Previtali
    Gianluca Della Vedova
    Paola Bonizzoni
    Quantitative Biology, 2019, 7 (04) : 278 - 292
  • [47] Efficient Colored de Bruijn Graph for Indexing Reads
    Hasegawa, Nozomi
    Shimizu, Kana
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (06) : 648 - 662
  • [48] Integrating long-range connectivity information into de Bruijn graphs
    Turner, Isaac
    Garimella, Kiran V.
    Iqbal, Zamin
    McVean, Gil
    BIOINFORMATICS, 2018, 34 (15) : 2556 - 2565
  • [49] Approximating Shortest Superstring Problem Using de Bruijn Graphs
    Golovnev, Alexander
    Kulikov, Alexander S.
    Mihajlin, Ivan
    COMBINATORIAL PATTERN MATCHING, 2013, 7922 : 120 - 129
  • [50] Practical dynamic de Bruijn graphs
    Crawford, Victoria G.
    Kuhnle, Alan
    Boucher, Christina
    Chikhi, Rayan
    Gagie, Travis
    BIOINFORMATICS, 2018, 34 (24) : 4189 - 4195