Gender classification using principal geodesic analysis and Gaussian mixture models

被引:0
|
作者
Wu, Jing [1 ]
Smith, William A. P. [1 ]
Hancock, Edwin R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim in this paper is to show how to discriminate gender using a parameterized representation of fields of facial surface normals (needle-maps) which can be extracted from 2D intensity images using shape-from-shading (SFS). We makes use of principle geodesic analysis (PGA) to parameterize the facial needle-maps. Using feature selection, we determine which of the components of the resulting parameter vector are the most significant in distinguishing gender. Using the EM algorithm we distinguish gender by fitting a two component mixture model to the vectors of selected features. Results on real-world data reveal that the method gives gender discrimination results that are comparable to human observers.
引用
收藏
页码:58 / 67
页数:10
相关论文
共 50 条
  • [1] Weighted principal geodesic analysis for facial gender classification
    Wu, Jing
    Smith, W. A. P.
    Hancock, E. R.
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2007, 4756 : 331 - 339
  • [2] Facial gender classification using shape from shading and weighted principal geodesic analysis
    Wu, Jing
    Smith, W. A. P.
    Hancock, Edwin R.
    [J]. IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 925 - 934
  • [3] Mixture Probabilistic Principal Geodesic Analysis
    Zhang, Youshan
    Xing, Jiarui
    Zhang, Miaomiao
    [J]. MULTIMODAL BRAIN IMAGE ANALYSIS AND MATHEMATICAL FOUNDATIONS OF COMPUTATIONAL ANATOMY, 2019, 11846 : 196 - 208
  • [4] Supervised Principal Geodesic Analysis on Facial Surface Normals for Gender Classification
    Wu, Jing
    Smith, William A. P.
    Hancock, Edwin R.
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2008, 5342 : 664 - 673
  • [5] Respiratory sounds classification using Cepstral analysis and Gaussian Mixture Models
    Bahoura, M
    Pelletier, C
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 9 - 12
  • [6] Classification and compression of ICEGS using gaussian mixture models
    Coggins, R
    Jabri, M
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, : 226 - 235
  • [7] Using Wavelets and Gaussian Mixture Models for Audio Classification
    Chuan, Ching-Hua
    Vasana, Susan
    Asaithambi, Asai
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 421 - 426
  • [8] Classification of facial images using Gaussian mixture models
    Liao, P
    Gao, W
    Shen, L
    Chen, XL
    Shan, SG
    Zeng, WB
    [J]. ADVANCES IN MUTLIMEDIA INFORMATION PROCESSING - PCM 2001, PROCEEDINGS, 2001, 2195 : 724 - 731
  • [9] Emotional speech classification using Gaussian mixture models
    Ververidis, D
    Kotropoulos, C
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 2871 - 2874
  • [10] Distribution based classification using Gaussian Mixture Models
    Gudnason, J
    Brookes, M
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4159 - 4159