Comment on "Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients'' - Reply

被引:14
|
作者
Kruglov, VI [1 ]
Peacock, AC [1 ]
Harvey, JD [1 ]
机构
[1] Univ Auckland, Dept Phys, Auckland, New Zealand
关键词
D O I
10.1103/PhysRevLett.92.199402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Bifurcations and exact solutions of generalized nonlinear Schrodinger equation
    Zhang, Qian
    Ke, Ai
    AIMS MATHEMATICS, 2025, 10 (03): : 5158 - 5172
  • [42] Chirped self-similar solitary waves for the generalized nonlinear Schrodinger equation with distributed two-power-law nonlinearities
    Triki, H.
    Porsezian, K.
    Senthilnathan, K.
    Nithyanandan, K.
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [43] Intermediate Self-similar Solutions of the Nonlinear Schrodinger Equation with an Arbitrary Longitudinal Gain Profile
    Zhao Wei
    Lu Ke-Qing
    Zhang Yi-Qi
    Yang Yan-Long
    Wang Yi-Shan
    Liu Xue-Ming
    CHINESE PHYSICS LETTERS, 2009, 26 (04)
  • [44] Asymptotics of multibump blow-up self-similar solutions of the nonlinear Schrodinger equation
    Budd, CJ
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) : 801 - 830
  • [45] BOUNDED SPATIAL EXTENSION OF THE SELF-SIMILAR COLLAPSING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    BERGE, L
    PESME, D
    PHYSICA SCRIPTA, 1993, 47 (03): : 323 - 327
  • [46] Analytical solutions of nonlinear Schrodinger equation with distributed coefficients
    Kengne, E.
    CHAOS SOLITONS & FRACTALS, 2014, 61 : 56 - 68
  • [47] Computation of self-similar solution profiles for the nonlinear Schrodinger equation
    Budd, C.
    Koch, O.
    Weinmueller, E.
    COMPUTING, 2006, 77 (04) : 335 - 346
  • [48] New exact solutions to the nonlinear Schrodinger equation with variable coefficients
    Guo, Qian
    Liu, Jing
    RESULTS IN PHYSICS, 2020, 16
  • [49] Self-similar solutions to the generalized deterministic KPZ equation
    Mohammed GUEDDA
    Robert KERSNER
    Nonlinear Differential Equations and Applications NoDEA, 2003, 10 : 1 - 13
  • [50] Global solutions and self-similar solutions for coupled nonlinear Schrodinger equations
    Ye, Yaojun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4613 - 4624