Oscillation criteria for solution to partial dynamic equations on time scales

被引:1
|
作者
Ramesh, R. [1 ]
Dix, Julio G. [2 ]
Harikrishnan, S. [3 ]
Prakash, P. [4 ]
机构
[1] Muthayammal Coll Engn, Dept Math, Rasipuram 637408, India
[2] Texas State Univ, Dept Math, 601 Univ Dr, San Marcos, TX 78666 USA
[3] Sona Coll Technol, Dept Math, Salem 636005, India
[4] Periyar Univ, Dept Math, Salem 636011, India
来源
关键词
oscillation; partial dynamic equations; time scales; DIFFERENTIAL-EQUATIONS;
D O I
10.15672/hujms.554157
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the oscillatory behavior of solutions to partial dynamic equation on time scales. We establish several oscillation criteria by applying a Ricatti transformation. Examples are provided to justify our results.
引用
收藏
页码:1788 / 1797
页数:10
相关论文
共 50 条
  • [21] NEW OSCILLATION CRITERIA FOR p-LAPLACIAN DYNAMIC EQUATIONS ON TIME SCALES
    Negi, Shekhar Singh
    Abbas, Syed
    Malik, Muslim
    Grace, Said R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (02) : 659 - 670
  • [22] OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES
    Thandapani, E.
    Piramanantham, V.
    TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (01): : 109 - 122
  • [23] Oscillation criteria of second-order delay dynamic equations on time scales
    Han, Zhenlai
    Sun, Shurong
    Sui, Meizhen
    SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 1, PROCEEDINGS, 2007, : 406 - +
  • [24] Oscillation criteria for quasi-linear functional dynamic equations on time scales
    Saker, Samir H.
    Grace, Said R.
    MATHEMATICA SLOVACA, 2012, 62 (03) : 501 - 524
  • [25] Oscillation Criteria for Second-order Nonlinear Dynamic Equations on Time Scales
    Cao, Fengjuan
    Han, Zhenlai
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 139 - 142
  • [26] Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales
    Wu, Xin
    Sun, Taixiang
    Xi, Hongjian
    Chen, Changhong
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [27] New oscillation criteria for higher order delay dynamic equations on time scales
    Taixiang Sun
    Weiyong Yu
    Qiuli He
    Advances in Difference Equations, 2014
  • [28] Oscillation criteria for third order nonlinear delay dynamic equations on time scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Cao, Fengjuan
    ANNALES POLONICI MATHEMATICI, 2010, 99 (02) : 143 - 156
  • [29] Oscillation Criteria for Second-Order Delay Dynamic Equations on Time Scales
    Zhenlai Han
    Bao Shi
    Shurong Sun
    Advances in Difference Equations, 2007
  • [30] Oscillation Criteria of Second-Order Dynamic Equations with Damping on Time Scales
    Qiu, Yang-Cong
    Wang, Qi-Ru
    ABSTRACT AND APPLIED ANALYSIS, 2014,