A color space study for skin lesion segmentation

被引:0
|
作者
Nisar, Humaira [1 ]
Ch'ng, Yau Kwang [1 ]
Chew, Tsyr Yee [1 ]
Yap, Vooi Voon [1 ]
Yeap, Kim Ho [1 ]
Tang, Jyh Jong [2 ]
机构
[1] Univ Tunku Abdul Rahman, Dept Elect Engn, Kampar, Malaysia
[2] Hosp Raja Permaisuri Bainum, Dept Dermatol, Ipoh, Malaysia
关键词
color models; segmentation; image analysis; Eczema skin lesions; ATOPIC-DERMATITIS; INDEX;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of this research is to identify the most suitable color model for segmentation of Eczema skin lesions. Eczema is a type of Atopic Dermatitis that is diagnosed by the dermatologists by visual inspection hence by subjective assessment. For segmentation, K-means clustering has been used. Four color spaces, i.e. HSI, CMY, YCbCr and CIELAB are used for comparisons. The final conclusion is made on the basis of the results for sensitivity, specificity and accuracy for each technique. It has been observed that the color channel "H" of HSI; followed by "a" of CIELab; gives better segmentation results.
引用
收藏
页码:172 / 176
页数:5
相关论文
共 50 条
  • [41] Adaptive skin segmentation in color images
    Phung, SL
    Chai, D
    Bouzerdoum, A
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 173 - 176
  • [42] Skin color constancy for illumination invariant skin segmentation
    Gottumukkal, R
    Asari, V
    [J]. IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2005, PTS 1 AND 2, 2005, 5685 : 969 - 976
  • [43] A Weighted Skin Probability Map for Skin Color Segmentation
    Chakraborty, Biplab Ketan
    Bhuyan, M. K.
    Kumar, Sunil
    [J]. PROCEEDINGS OF THE 2016 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2016, : 2133 - 2136
  • [44] Skin Color Enhancement Based on Favorite Skin Color in HSV Color Space
    Zhang, Xiao-Ning
    Jiang, Jue
    Liang, Zhi-Hu
    Liu, Chun-Liang
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2010, 56 (03) : 1789 - 1793
  • [45] Residual refinement for interactive skin lesion segmentation
    Dalei Jiang
    Yin Wang
    Feng Zhou
    Hongtao Ma
    Wenting Zhang
    Weijia Fang
    Peng Zhao
    Zhou Tong
    [J]. Journal of Biomedical Semantics, 12
  • [46] Rethinking Skin Lesion Segmentation in a Convolutional Classifier
    Burdick, Jack
    Marques, Oge
    Weinthal, Janet
    Furht, Borko
    [J]. JOURNAL OF DIGITAL IMAGING, 2018, 31 (04) : 435 - 440
  • [47] Skin Lesion Segmentation with C-UNet
    Wu, Junyan
    Chen, Eric Z.
    Rong, Ruichen
    Li, Xiaoxiao
    Xu, Dong
    Jiang, Hongda
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2785 - 2788
  • [48] Efficient skin lesion segmentation with boundary distillation
    Zhang, Zaifang
    Lu, Boyang
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (09) : 2703 - 2716
  • [49] Automated seeding for ultrasound skin lesion segmentation
    Marosan, Peter
    Szalai, Klara
    Csabai, Domonkos
    Csany, Gergely
    Horvath, Andras
    Gyongy, Miklos
    [J]. ULTRASONICS, 2021, 110
  • [50] Rethinking Skin Lesion Segmentation in a Convolutional Classifier
    Jack Burdick
    Oge Marques
    Janet Weinthal
    Borko Furht
    [J]. Journal of Digital Imaging, 2018, 31 : 435 - 440