Automorphisms of an AT4(4,4,2)-Graph and of the Corresponding Strongly Regular Graphs

被引:2
|
作者
Efimov, K. S. [1 ,2 ,3 ]
机构
[1] Ural Fed Univ, Ekaterinburg 620000, Russia
[2] Ural Fed Univ Econ, Ekaterinburg 620144, Russia
[3] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620990, Russia
基金
俄罗斯科学基金会;
关键词
distance-regular graph; graph automorphism;
D O I
10.1134/S008154381902007X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Makhnev, Paduchikh, and Khamgokova gave a classification of distance-regular locally GQ(5, 3)-graphs. In particular, there arises an AT 4(4, 4, 2)-graph on 644 vertices with intersection array {96, 75, 16, 1; 1, 16, 75, 96}. The same authors proved that an AT 4(4, 4, 2)-graph is not a locally GQ(5, 3)-graph. However, the existence of an AT 4(4, 4, 2)-graph that is a locally pseudo-GQ(5, 3)-graph is unknown. The antipodal quotient of an AT 4(4, 4, 2)-graph is a strongly regular graph with parameters (322, 96, 20, 32). These two graphs are locally pseudo-GQ(5, 3)-graphs. We find their possible automorphisms. It turns out that the automorphism group of a distance-regular graph with intersection array {96, 75, 16, 1; 1, 16, 75, 96} acts intransitively on the set of its antipodal classes.
引用
收藏
页码:S59 / S67
页数:9
相关论文
共 50 条
  • [41] On Amply Regular Locally GQ(4,4)-Graphs
    Makhnev, A. A.
    Paduchikh, D. V.
    Khamgokova, M. M.
    DOKLADY MATHEMATICS, 2010, 82 (02) : 773 - 776
  • [42] On the AVDTC of 4-regular graphs
    Papaioannou, A.
    Raftopoulou, C.
    DISCRETE MATHEMATICS, 2014, 330 : 20 - 40
  • [43] GQ(4,2)-extensions, strongly regular case
    Makhnev, AA
    MATHEMATICAL NOTES, 2000, 68 (1-2) : 97 - 102
  • [44] On graphs with strongly regular local subgraphs with parameters (196,45,4,12)
    Makhnev, A. A.
    Tokbaeva, A. A.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 276 - 278
  • [45] Examples of polycyclic groups with regular automorphisms of order 4
    Wehrfritz, B. A. F.
    JOURNAL OF ALGEBRA, 2014, 400 : 78 - 81
  • [46] On automorphism groups of AT4(7, 9, r)-graphs and their local subgraphs
    Tsiovkina, Lyudmila Yur'evna
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (03): : 263 - 271
  • [47] THE PRIME SPECTRUM OF AN AUTOMORPHISM GROUP OF AN AT4(p,p+2, r)-GRAPH
    Tsiovkina, L. Yu
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (05) : 917 - 928
  • [48] On strongly regular graphs with μ ≤ 2
    Bagchi, Bhaskar
    DISCRETE MATHEMATICS, 2006, 306 (14) : 1502 - 1504
  • [49] On automorphisms of strongly regular graphs with parameters (640, 243, 66, 108)
    A. A. Makhnev
    M. S. Nirova
    Doklady Mathematics, 2011, 84 : 718 - 721
  • [50] On automorphisms of strongly regular graphs with parameters (486, 100, 22, 20)
    A. A. Makhnev
    D. V. Paduchikh
    Doklady Mathematics, 2013, 87 : 189 - 192