Approximation of Boolean Networks

被引:0
|
作者
Cheng, Daizhan [1 ]
Zhao, Yin [1 ]
Kim, Jongrae [2 ]
Zhao, Yunbo [2 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Univ Glasgow, Div Biomed Engn, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Boolean network; Aggregation; Approxima-tion; Modularity; SCALAR EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of approximation to large-scale Boolean networks is considered. First, we assume a large-scale Boolean network is aggregated into several sub-networks. Using the outputs(or inputs) of each sub-network as new state variables, a new simplified time-varying network is obtained. Then a time-invariant Boolean network is used to approximate each subsystem. Observed data are used to find the best approximating dynamic models. Finally, the aggregation method is investigated.
引用
收藏
页码:2280 / 2285
页数:6
相关论文
共 50 条
  • [21] Approximation of Boolean Functions by Local Search
    Andreas Albrecht
    Chak-Kuen Wong
    Computational Optimization and Applications, 2004, 27 : 53 - 82
  • [22] Boolean Approximation in Periodic Hilbert Spaces
    Delvos, Franz-J.
    RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 237 - 244
  • [23] Approximation of Boolean functions by monomial ones
    Discrete Math Appl, 2006, 1 (7-28):
  • [24] Approximation of Boolean functions by local search
    Albrecht, A
    Wong, CK
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 27 (01) : 53 - 82
  • [25] Approximation of boolean functions by combinatorial rectangles
    Sauerhoff, M
    THEORETICAL COMPUTER SCIENCE, 2003, 301 (1-3) : 45 - 78
  • [26] Boolean Approximation in Periodic Hilbert Spaces
    Franz-J. Delvos
    Results in Mathematics, 2009, 53 : 237 - 244
  • [27] On representation and approximation of operations in Boolean algebras
    Goodman, IR
    Kreinovich, V
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2001, 16 (05) : 647 - 653
  • [28] Interpolative Boolean Networks
    Dobric, Vladimir
    Milosevic, Pavle
    Rakicevic, Aleksandar
    Petrovic, Bratislav
    Poledica, Ana
    COMPLEXITY, 2017,
  • [29] DYNAMICS OF BOOLEAN NETWORKS
    Zou, Yi Ming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (06): : 1629 - 1640
  • [30] Simplifying Boolean networks
    Richardson, KA
    ADVANCES IN COMPLEX SYSTEMS, 2005, 8 (04): : 365 - 381