Data-driven multivariate algorithms for damage detection and identification: Evaluation and comparison

被引:33
|
作者
Torres-Arredondo, Miguel A. [1 ,2 ]
Tibaduiza, Diego A. [3 ]
Mujica, Luis E. [3 ]
Rodellar, Jose [3 ]
Fritzen, Claus-Peter [1 ,2 ]
机构
[1] Univ Siegen, Ctr Sensor Syst ZESS, D-57076 Siegen, Germany
[2] Univ Siegen, Inst Mech & Control Engn Mech, Tech Mech Grp, D-57076 Siegen, Germany
[3] Univ Politecn Catalunya BarcelonaTech, Dept Appl Math 3, Barcelona, Spain
关键词
Damage detection; ultrasonic guided waves; discrete wavelet transform; principal component analysis; independent component analysis; hierarchical non-linear principal component analysis; VALIDATION; WAVES;
D O I
10.1177/1475921713498530
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article is concerned with the experimental validation of a structural health monitoring methodology for damage detection and identification. Three different data-driven multivariate algorithms are considered here to obtain the baseline pattern. These are based on principal component analysis, independent component analysis and hierarchical non-linear principal component analysis. The contribution of this article is to examine and compare the three proposed algorithms that have been reported as reliable methods for damage detection and identification. The approach is based on a distributed piezoelectric active sensor network for the excitation and detection of structural dynamic responses. A woven multilayered composite plate and a simplified aircraft composite skin panel are used as examples to test the approaches. Data-driven baseline patterns are built when the structure is known to be healthy from wavelet coefficients of the structural dynamic responses. Damage is then simulated by adding masses at different positions of the structures. The data from the structure in different states (damaged or not) are then projected into the different models by each actuator in order to generate the input feature vectors of a self-organizing map from the computed components together with squared prediction error measures. All three methods are shown to be successful in detecting and classifying the simulated damages. At the end, a critical comparison is given in order to investigate the advantages and disadvantages of each method for the damage detection and identification tasks.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 50 条
  • [21] A Data-Driven Mode Identification Algorithm for Riser Fatigue Damage Assessment
    Shi, C.
    Park, J.
    Manuel, L.
    Tognarelli, M. A.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (03):
  • [22] Sparse Actuator Attack Detection and Identification: A Data-Driven Approach
    Zhao, Zhengen
    Xu, Yunsong
    Li, Yuzhe
    Zhao, Yu
    Wang, Bohui
    Wen, Guanghui
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (06) : 4054 - 4064
  • [23] A data-driven monitoring scheme for multivariate multimodal data
    Wang, Zhiqiong
    Gong, Renping
    Song, Lisha
    He, Shuguang
    Gao, Yuan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 192
  • [24] Data-Driven Pattern Identification and Outlier Detection in Time Series
    Khoshrou, Abdolrahman
    Pauwels, Eric J.
    INTELLIGENT COMPUTING, VOL 1, 2019, 858 : 471 - 484
  • [25] Big Data-Driven Cellular Information Detection and Coverage Identification
    Wang, Hai
    Xie, Su
    Li, Ke
    Ahmad, M. Omair
    SENSORS, 2019, 19 (04)
  • [26] Wind turbine blade damage detection using data-driven techniques
    Velasco D.
    Guzmán L.
    Puruncajas B.
    Tutivén C.
    Vidal Y.
    Renewable Energy and Power Quality Journal, 2023, 21 : 462 - 466
  • [27] Enhanced data-driven Damage Detection for Structural Health Monitoring Systems
    Chaabane, Marwa
    Ben Hamida, Ahmed
    Mansouri, Majdi
    Nounou, Hazem
    Nounou, Mohamed
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [28] MULTIVARIATE ENTROPY ANALYSIS WITH DATA-DRIVEN SCALES
    Ahmed, M. U.
    Rehman, N.
    Looney, D.
    Rutkowski, T. M.
    Kidmose, P.
    Mandic, D. P.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3901 - 3904
  • [29] Data-Driven Damage Detection and Control Adaptation for an Autonomous Underwater Vehicle
    Özkahraman, Ozer
    Tajvar, Pouria
    Dimarogonas, Dimos V.
    Ögren, Peter
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3343 - 3350
  • [30] Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure
    Alemu, Yohannes L.
    Lahmer, Tom
    Walther, Christian
    ENG, 2024, 5 (02): : 629 - 656