Efficient photocatalytic hydrogen production using an NH4TiOF3/TiO2/g-C3N4 composite with a 3D camellia-like Z-scheme heterojunction structure

被引:22
|
作者
Lv, Bo [1 ]
Lu, Lili [2 ]
Feng, Xuefan [1 ]
Wu, Xiaoping [3 ]
Wang, Xiaoming [1 ]
Zou, Xiong [1 ]
Zhang, Fuqin [1 ]
机构
[1] Cent South Univ, Natl Key Lab Sci & Technol High Strength Struct M, Changsha 410083, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] State Key Lab Vanadium & Titanium Resources Compr, Panzhihua 617000, Peoples R China
关键词
Photocatalytic hydrogen; Composites; 3D camellia-like; Z-scheme; IN-SITU SYNTHESIS; G-C3N4/TIO2; NANOSHEETS; TIO2; NANOPARTICLES; PERFORMANCE; SEPARATION; NANOTUBES; EVOLUTION; GRAPHENE; RATIOS; ENERGY;
D O I
10.1016/j.ceramint.2020.07.141
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photocatalysis is one of the most promising ways to realize artificial photosynthesis. The biologically inspired photocatalysts with 3D flower-like structures have attracted much attention. In this study, an effective method for the synthesis of composite photocatalytic material, NH4TiOF3/TiO2/g-C3N4, with a 3D camellia-like structure, was developed. The 3D hierarchical structure of the composite material enabled multiple refractions and reflections of light within the catalyst, which greatly improved the efficiency of the sunlight harvesting. The combination of NH4TiOF3 and TiO2 also effectively reduced the electron-hole recombination in the g-C3N4. To evaluate its photocatalytic performance, the prepared nanostructured composite materials were tested for the water-splitting with simulated sunlight. It showed the hydrogen evolution at the rate of 3.6 mmol/g/h, which is 4.0 times faster than that from the pure g-C3N4. The composite materials exhibited excellent cycling stability. The detailed mechanism of the Z-scheme heterojunction was also discussed. The proposed synthesis route for the creation of 3D flower-like hierarchical composites provides a new effective technique for developing efficient, active, and stable composite photocatalysts for hydrogen production.
引用
收藏
页码:26689 / 26697
页数:9
相关论文
共 50 条
  • [31] Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production
    Dong, Zhifang
    Wu, Yan
    Thirugnanam, Natarajan
    Li, Gonglin
    APPLIED SURFACE SCIENCE, 2018, 430 : 293 - 300
  • [32] Facile synthesis of Z-scheme KBiO3/g-C3N4 Z-scheme heterojunction photocatalysts: Structure, performance, and mechanism
    Zhang, Hao
    He, Jian
    Wu, Pan
    Jiang, Wei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [33] Mechanistic insight into photocatalytic CO2 reduction by a Z-scheme g-C3N4/TiO2 heterostructure
    Wang, Shuo
    Zhao, Tingting
    Tian, Yu
    Yan, Likai
    Su, Zhongmin
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (26) : 11474 - 11480
  • [34] Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z-Scheme ZnIn2S4/g-C3N4 Heterojunction
    Tan, Mengxi
    Ma, Yuan
    Yu, Chengye
    Luan, Qingjie
    Li, Junjie
    Liu, Chuanbao
    Dong, Wenjun
    Su, Yanjing
    Qiao, Lijie
    Gao, Lei
    Lu, Qipeng
    Bai, Yang
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (14)
  • [35] Direct Z-scheme construction of g-C3N4 quantum dots / TiO2 nanoflakes for efficient photocatalysis
    Xu, Chengqun
    Li, Dezhi
    Liu, Xiaolu
    Ma, Renzhi
    Sakai, Nobuyuki
    Yang, Yuchen
    Lin, Shiyin
    Yang, Jiale
    Pan, Hui
    Huang, Janjer
    Sasaki, Takayoshi
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [36] Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation
    Jo, Wan-Kuen
    Natarajan, Thillai Sivakumar
    CHEMICAL ENGINEERING JOURNAL, 2015, 281 : 549 - 565
  • [37] The Construction of an α-F2O3/Tubular g-C3N4 Z-Scheme Heterojunction Catalyst for the Efficient Photocatalytic Degradation of Tetracycline
    Xu, Feng
    Zhang, Kai
    Li, Kun
    Ju, Hao
    Xue, Qian
    Qi, Xueqiang
    Jiang, Jinxia
    COATINGS, 2023, 13 (11)
  • [38] Cd-doped g-C3N4/Ag2S/Ag Z-scheme heterojunction for efficient photocatalytic hydrogen evolution
    Zhang, Hantao
    Liang, Yunxia
    Huang, Yanbing
    Zhang, Jian
    Zhang, Jinshan
    Hu, Bingxing
    Ge, Guixian
    Liu, Jichang
    Bao, Fuxi
    FUEL, 2025, 389
  • [39] Hierarchical flower-like 0D/3D g-C3N4/TiO2 S-scheme heterojunction with enhanced photocatalytic activity
    Li, Yuan
    Wang, Guoshu
    Zhang, Huigui
    Qian, Wenyao
    Li, Dongmei
    Guo, Zhiqiang
    Zhou, Ru
    Xu, Jinzhang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 646
  • [40] Facile Synthesis of g-C3N4/TiO2/Hectorite Z-Scheme Composite and Its Visible Photocatalytic Degradation of Rhodamine B
    You, Rong
    Chen, Jinyang
    Hong, Menghan
    Li, Jinrui
    Hong, Xiaomin
    MATERIALS, 2020, 13 (22) : 1 - 17