EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A PERTURBATION OF CHOQUARD EQUATION WITH HARDY-LITTLEWOOD-SOBOLEV UPPER CRITICAL EXPONENT

被引:0
|
作者
Su, Yu [1 ,2 ]
Chen, Haibo [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev upper critical exponent; Choquard equation; SYMMETRIC-SOLUTIONS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the problem -Delta u = (integral(RN) vertical bar u vertical bar(2)*mu/vertical bar x-y vertical bar(mu) dy) vertical bar u vertical bar(2)mu*(-2)+ f(x, u) in R-N, where N >= 3, mu is an element of(0, N) and 2(mu)* = 2N-mu/N-2. Under suitable assumptions on f (x, u), we establish the existence and non-existence of nontrivial solutions via the variational method.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Hu, Tingxi
    Peng, Shuangjie
    Shuai, Wei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [2] Normalized Solutions for the Fractional Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Exponent
    Meng, Yuxi
    He, Xiaoming
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [3] Normalized solutions to the nonlinear Choquard equations with Hardy-Littlewood-Sobolev upper critical exponent
    Shang, Xudong
    Ma, Pei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
  • [4] Bound state solutions of fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Yang, Xiaolong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (05):
  • [5] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [6] Existence of groundstates for Choquard type equations with Hardy-Littlewood-Sobolev critical exponent
    Li, Xiaowei
    Wang, Feizhi
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [7] Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Li, Qi
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [8] Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Lun Guo
    Tingxi Hu
    Shuangjie Peng
    Wei Shuai
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [9] Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Bueno, H.
    da Hora Lisboa, N.
    Vieira, L. L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [10] A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality
    Gao, Fashun
    Yang, Minbo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)