Cubic quasi-interpolation spline collocation method for solving convection-diffusion equations

被引:7
|
作者
Bouhiri, S. [1 ]
Lamnii, A. [1 ]
Lamnii, M. [2 ]
机构
[1] Univ Hassan First, FST, Lab MISI, Settat, Morocco
[2] Univ Hassan First, EST, Lab LAMSAD, Berrechid, Morocco
关键词
Quasi-interpolation; B-spline; Collocation-method; Convection-diffusion equation; NUMERICAL-SOLUTION;
D O I
10.1016/j.matcom.2018.11.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we use a cubic spline collocation method to solve a two dimensional convection-diffusion equation. More precisely, we approximate first and second order partial derivatives by those of cubic spline quasi-interpolants to produce a system of first order ordinary differential equations. The resulting system can be solved using MATLAB's ode solver. Error estimates of quasi-interpolants which are used are given with full discussion. Furthermore, numerical examples are presented to show the validity of our methods. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [41] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [42] Bivariate hierarchical Hermite spline quasi-interpolation
    Cesare Bracco
    Carlotta Giannelli
    Francesca Mazzia
    Alessandra Sestini
    [J]. BIT Numerical Mathematics, 2016, 56 : 1165 - 1188
  • [43] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    [J]. Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [44] Non-uniform quasi-interpolation for solving Hammerstein integral equations
    Barrera, D.
    El Mokhtari, F.
    Ibanez, M. J.
    Sbibih, D.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (1-2) : 72 - 84
  • [45] Superconsistent collocation methods with applications to convection-dominated convection-diffusion equations
    De l'Isle, Francois
    Owens, Robert G.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 391
  • [46] Unconditionally stable C1-cubic spline collocation method for solving parabolic equations
    Sallam, S
    Anwar, MN
    Abdel-Aziz, MR
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (07) : 813 - 821
  • [47] Numerical approach for solving diffusion problems using cubic B-spline collocation method
    Gupta, Bharti
    Kukreja, V. K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 2087 - 2099
  • [48] A cubic B-spline quasi-interpolation algorithm to capture the pattern formation of coupled reaction-diffusion models
    R. C. Mittal
    Sudhir Kumar
    Ram Jiwari
    [J]. Engineering with Computers, 2022, 38 : 1375 - 1391
  • [49] Multiquadric Quasi-Interpolation Methods for Solving Partial Differential Algebraic Equations
    Bao, Wendi
    Song, Yongzhong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 95 - 119
  • [50] Modified Laguerre collocation method for solving 1-dimensional parabolic convection-diffusion problems
    Gurbuz, Burcu
    Sezer, Mehmet
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 8481 - 8487