Self-Assembly and Stability of Hydrogen-Bonded Networks of Bridged Triphenylamines on Au(111) and Cu(111)

被引:14
|
作者
Steiner, Christian [1 ]
Gliemann, Bettina D. [2 ]
Meinhardt, Ute [2 ]
Gurrath, Martin [3 ,4 ]
Meyer, Bernd [3 ,4 ]
Kivala, Milan [2 ]
Maier, Sabine [1 ,3 ]
机构
[1] Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Dept Chem & Pharm, Chair Organ Chem 1, D-91054 Erlangen, Germany
[3] Univ Erlangen Nurnberg, Interdisciplinary Ctr Mol Mat, D-91052 Erlangen, Germany
[4] Univ Erlangen Nurnberg, Comp Chem Ctr, D-91052 Erlangen, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 46期
关键词
TRIMESIC ACID; ORGANIC-MOLECULES; CYANURIC ACID; SUPRAMOLECULAR ASSEMBLIES; PHASE-TRANSFORMATIONS; MELAMINE; ADSORPTION; DEPROTONATION; LAYERS; NANOSTRUCTURES;
D O I
10.1021/acs.jpcc.5b08009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption, chemical nature, and self-assembly of diaminotriazinyl- and carboxyl-substituted triphenylamines with dimethylmethylene bridges were studied on Au(111) and Cu(111) at submonolayer coverage by low-temperature scanning tunneling microscopy and density functional theory. On Au(111), both molecules form extended porous honeycomb networks. The geometry of the networks agrees well with density functional theory optimized hydrogen-bonded gas phase structures. Therefore, the self-assemblies on Au(111) are strongly directed by intermolecular hydrogen bond interactions. In contrast, on Cu(111) both molecules aggregate in dense islands owing to the stronger moleculesurface interaction. While the carboxyl substituents partially deprotonate at room temperature on Cu(111), the diaminotriazinyl-substituted triphenylamines adsorb mainly intact. The diaminotriazinyl groups deprotonate gradually at increased adsorption temperatures.
引用
收藏
页码:25945 / 25955
页数:11
相关论文
共 50 条
  • [41] Self-assembly of phospholipid molecules at a Au(111) electrode surface
    1600, American Chemical Society, Columbus, United States (126):
  • [42] Self-assembly and growth of manganese phthalocyanine on an Au(111) surface
    Jiang Yu-Hang
    Liu Li-Wei
    Yang Kai
    Xiao Wen-De
    Gao Hong-Jun
    CHINESE PHYSICS B, 2011, 20 (09)
  • [43] Effects of monolayer Bi on the self-assembly of DBBA on Au(111)
    Tian, Guo
    Shen, Yixian
    He, Bingchen
    Yu, Zhengqing
    Song, Fei
    Lu, Yunhao
    Wang, Pingshan
    Gao, Yongli
    Huang, Han
    SURFACE SCIENCE, 2017, 665 : 89 - 95
  • [44] Influence of Deoxyribose Group on Self-Assembly of Thymidine on Au(111)
    Yang, Bing
    Wang, Yeliang
    Li, Guo
    Cun, Huanyao
    Ma, Ying
    Du, Shixuan
    Xu, Mingchun
    Song, Yanlin
    Gao, H. -J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (41): : 17590 - 17594
  • [45] Self-assembly of N-heterocyclic carbenes on Au(111)
    Inayeh, Alex
    Groome, Ryan R. K.
    Singh, Ishwar
    Veinot, Alex J.
    de Lima, Felipe Crasto
    Miwa, Roberto H.
    Crudden, Cathleen M.
    McLean, Alastair B.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [46] Self-assembly and growth of manganese phthalocyanine on an Au(111) surface
    姜宇航
    刘立巍
    杨锴
    肖文德
    高鸿钧
    Chinese Physics B, 2011, 20 (09) : 320 - 324
  • [47] Molecular self-assembly of DBBA on Au(111) at room temperature
    Schneider, Sebastian
    Bytyqi, Kushtrim
    Kohaut, Stephan
    Buegel, Patrick
    Weinschenk, Benjamin
    Marz, Michael
    Kimouche, Amina
    Fink, Karin
    Hoffmann-Vogel, Regina
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (46) : 28371 - 28380
  • [48] STM investigation of self-assembly process of decanethiol on Au(111)
    Yamada, R
    Uosaki, K
    DENKI KAGAKU, 1997, 65 (06): : 440 - 443
  • [49] An XPS study of heterocyclic thiol self-assembly on Au(111)
    Whelan, CM
    Smyth, MR
    Barnes, CJ
    Brown, NMD
    Anderson, CA
    APPLIED SURFACE SCIENCE, 1998, 134 (1-4) : 144 - 158
  • [50] Tridentate benzylthiols on Au(111): control of self-assembly geometry
    Mezour, Mohamed A.
    Perepichka, Iryna I.
    Ivasenko, Oleksandr
    Lennox, R. Bruce
    Perepichka, Dmitrii F.
    NANOSCALE, 2015, 7 (11) : 5014 - 5022